gas be generated alone, which may be employed for chemical distillation, for the desulphurization of ores, and other suita ble purposes.

the wieel question.

W. E. H was one of the earliest to send us a model illustrative of the views of the two revolution philosophers; but when the engraving of the model was ready we found that we had mislaid his letter. We have theretore been obliged to delay the publication of the engraving until we could communicate with him.

Above is the view of his model. A is the fixed wheel, set on a fixed disk, C; B the movable wheel, carried on a mov able disk, D , which is turned by button, c. A long pointer, b is attached to the center of the movabie wheel, B. The axial line of the movable wheel we have for the convenience of the eye, enlarged into the form of the short pointer, a^{\prime} : instead of a pointer, a dot or other figure might be ased. This short pointer our correspondent wishes us to say, is not on the model. B' B" B"' are the several positions of the movable wheel in passing around the fixed wheel. The following is the letter of W.E. H:

Messrs. Edtrors:-A wheel may properly be said to re volve on its axis. when each point in the circumference of the wheel is successively in every direction from that axis, i.e, if the wheel is vertical each point of the circumference in succession is above, on one side, belo the axis, on the other side, and again above : if the wheel is horizontal each point is successively east, s)uth, west. north of the axis or in reverse order. In the case before us, the spokes of the wheel or an index placed upon it would point in order to all the figures on a large clock dial surrounding it. That this is the true and only idea of a sevolution, seems to me evident from a simple illustration.
A wagon wheel is said by every one to revolve on its axis (cr axle if you choose, when the wagon is drawn forward. This was your illustration on page 67 of the last volume. Why "revolve?" Because each point of the tire in succession is above the axis on one side of it, below it, etc. The actual path described by such point is a cycloid never returning in to itself. I give a diagram which will make this clear to unscientific readers.

I refer, also, to Watt's sun-and-planet wheels, designed by him to take the place of a crank and in the use of which he mentions as an advantage, the fact "that one stroke of the engine producestwo strokes of the wheel, while with a craok, one stroke of the engine gives but one revclution to the whrel." I regard this device of Wau's as the converse, so to speak, of the que tion under consideration.
Referring to the engraving I take this ground : 1st. That the long index shows clearly that the movable wheel makes two revolutions whils rolling round the fixed wheel. 2d. That the short index, if it shows anything, shows that the bearing (not axis) of the movable wheel makes one revolution 3 d . That the two revolutions of the movable wheel are made on the bearing, the central line of which is the asis. I add also the suggestion prompted by the addition of the second index that the question is not how many more revolutions the wheel makes than its axis, but how many it makes on the axis.
W. E. H.

We have understood W.E. H. to be among those who maintain that a movable wheel makestwo revolutions on its own axis in rolling once around a fixed wheel of the same
diameter. But he does not positively state so in the above explanation. He says, 1st. that the movable whetl makes two revolutions. Does he m man on its own axis, or around the axis of the fixed wheel, or what? 2d. He says that the bearing (not axis) of the invable wheel makes one revolution. 3d. He eays that tworevolutions of the movable wheqlare made on the bearing, (not ${ }^{2}$ xis.) Onc correspondent has not clearly answered the question which he
concluding sentence of bis letter.
Whether the axis of B rotates or not,its position is changed by the passage of B around A. One position of the axis is indicated st a^{\prime}, another at $a^{\prime \prime}$, another at $a^{\prime \prime \prime}$, and another at $a^{\prime \prime \prime}$. By observing these positions, and the movement of the wheel, B , in respect to them, as inaicated by the long pointer, it will beseen that tho whel, B in passing once
around A, makes one revolution on its own asis. The other
movements made bs B-i.e, those not made on its own axismovements made by $\mathrm{B}-i$.
need not be here noticed.

Messrs. Editous:-I sumit another sty le of proof from any yet advanced in support of the "dual theory." It has been effective among the "oneists" of my acquaintance, and I hope it will answer as well with you.
A wheel, say three feet in circumferenco, rolled three feet on a plain surtace, will make exactly one revolution; but if (as in the problem) it is ALSO required to make the circuit of an. other wheel, it must necessarily make another revolution to do it , otherwise there is no difference between a plane and a circle.

Again, I hive two movable wheels of the same size hung side by side, thus--

I find, in tursing them toward each o her at cqual speed, that it takes just one revolution of each whed to bring the peic.ts, 1, 1, again together; conseruently if one was stationary, it 1, l, again together; conseguently if one was stationary, it
would take just twoo revolutions of the other around it to bring about the same result. Be kind enough to show the fallacy of these two propositions, or surrender at once to the victorious "dualists."
F. L. B.

Boston, Mass.
We think there may be a difference between a plane and a curve, whather the wheel makes a second revolution or not. Because two wheels of the same size each revolve once in returning to a given point, it does not consequently follow that if one wheel were fixed, the other wheel would have ts revolve twice around the fixed wheel in order to reach the starting point.

We have received a model which shows two revolutions of a shaft produced by one revolution of the movable wheel. Also a model which shows one revolution of a shaft by one revolution of the movable wheel. Also a model which the senders think shows two revolutions of the movable whee! when a rod is set in a particular way, and oas revolution when set in another way. We have also received a variety of movel diagrams upon the sabject, on of which shows how four revolutions of a sbaft artached to the axis of a movable wheel may be profuced by ont revolution of the wheel upın wheel may be produced by ont revolution of the wheel upin
its axis. We shall shorilg present diagrams of somo of these its axis.
devices.

Composition Fuel.

The mixture of tar, coal dust, sawdust, tan bark, peat, an 1 other inflammable refuse stuff, and the pressing of the same into blocks, for the purnoses of fuel, is very commou. and several patents have been issued for variations of such mixtures Washington Stickney, and Nathan B. Chase, of Lockport, N. Y, have lately obtained one of these patents, and they say
"The coal consists of screenings and other fine portions, which accumulate in great abundance in coal yards, and bitherto bave been concidered comparatively valueless. The tan bark used (commonly called spent tau bark) is also cow. paratively uscless and very abundant. These, with other in. gredients, hitherto considered of little or no value, are su com bined as to form a cheap and convenient fuel, and may be compressed, by mechanical power into blocks convenient for use. The coal tar cements the whole, making a solid mass, which may be readily ignited, and is well adapted for common fuel, especially for summer use.
"The above ingredients are combined in the following proportions, to wit: Coal, e parts; tan bark, 2 parts; sawdust 2 parts; peat, or othes fine woody or vesetable matter, 1 part, coal tar or pitch, 1 pa t, or sufficient to cement the whole; or they may be combined in a greater or less proportion of either, securing substantially the same result. There mass may be easily ignited with shavings or paper,
whole or more readily by the application of a small quantity of benzine and a match."

Richardson's Process for Making: Steel.
Many of the puddling furnaces of Great Britain have lately been improved by the addition of an apparatus for blowing air into them, resembling that used by Bessemer in making steel directly from the ore. The application of the improvemest requires no alteration in the form of the common puddling furnace, for it does notessentially change the old method of puddling ; but by introducing air through the iron rake or rabble used to stir the metal it reduces in quality or duration one particular stage of the process. Lustead of numerous small holes in the blast pipe or tubular rabble, to subdivide the current of air, there is one broad slit or rectangular opening about half an inch wide, and three or four inches long, which is more easily kept free from slag. Two or three tubular rabbles are fitted to each furnace, to be used alternately, in order to prevent over heating. Each one is connected to the air receiver by long flexible tubes of india-ru bber. The air is turned on before the rabble is introduced, and remains on until it is withdrawn, in order to prevent the narrow aperture from being choked by cinders. By means of the blast rabble the time occupitd in bringing the molten
10. At the beginning of the operation the sparks thrown off indicate that silica is being separated from the m / ss, and as soon as the flame is clear the tubular rabtle is witidrawn and the common rabble is substituted. A number of experimenis have demonstrated that the who'e process fion the time on ordinary furnace is first charged until the m 2 s 3 is finished does not consme more than o o hour and a quarter. The quality of the material produced is said $t s$ be superior, and in no case thus far has there been any failuro to prociuce the desired results.

MANGFACTORING, MINING, AND RALLROAD ITEMS.

From a recent report of the Commissioner of the General Land Office, it

 now completed no less than 3,000 willes, and 12 course or construction 17,880
nilles additional, or more than one third the length of all the rallo milles additional, or more than one third the length of all the railronds in the
world. To assist this wonderful develosment, Government has contrihutcd World. To assist th1s wonderful developme
over $\$ 184,000,000$ and 860,000 aeres of 1 and.
South Pass City, the headquarrers ot the last mining sensation, the S Sweet water gold fifld. was first laid out in October, 1857. It has now eigity
houses anci eight places of business. Its population at present is but 700 , buut it $1=$ conofidently expected that next summer will witness the advent of fron twenty to tiriry thousand eager seirc liers for wealth, and that South Pass City will experreace a much more rapid and substantial growth tban even Cacyenne City.
There is nnw in course of manufacture at a leather belting factory in this
city, what is said to be the largest leatier belt ever made. The width is 47 city, what is said to be the larrest leatier belt ever made. The width is 47 inches; length, 100 fect; weight, 18,009 pounds; and cost, 83.000 . It is com-
posed of triplicate aaveri ot leather, making a thickocss of three quarters of an inch, and cementes and pregeg so firmlg together thatishast he appearance of one solid piece.
A bed of hematite iron ore has been discovered at Sinking Spring, sume four miles from Reading, Pa. Parties have already sunk a
passes tbrough a sold bed of ore twenty-six feet in diameter.
From this city, via Fhiladelphia and Pittsburg, to Cheyenne City, at tbe
base of the Rocky Mounains, a cistance of 1,917 miles, but tiree changes of cars are made and foumains, a cistance of 1,917 miles, but tiree changes of New York and new Orleans, 1,500 miles, there are ten diff rent roads, while between New York and Charlest n, only 988 miles, there are also ten.
A railroad project to unite the capital of Mexico with the Unitgd States, by a line along the Gulf coust, has been referred to a cominittee of the Micxica
Congress. Congress.
sidut four miles from the newly opened Japanese port of Hiogo, is quite
an cxtensive deposit of coal. The uncthods o working the miues ore of most primitive description. Wherever the coal or shale, has been seen
men cropping ontrom the hilliside, a horizontal passage, rever mere than twen-ty-fivefeet long, has been ruan in. The miners, croushed to the ground in these burrows, with poined hammers pick away at thes ides, and viry care-
fully ssort with their bands each little piece of coal obtaioed, according to fully assort with their bands each little piecs of coal obtained, according to
its quality, The Japanese Government is not insensible to the advantages of its quality, The Japanese Government is not insensible to the advantages of
animpoved mode of working tbe coal of Hiogo, and it is not impossible that before long some more systematic plan will bc introduced.
Scarcely inferior in intcrest to Krupp's mammoth estahlisbment, are tho great iron and stcel worke of Hoerde. employing 4,500 peop 1. . Here the iron
is produced rom the ore, and coaverted into castings of various is producd rrom the ore, and converted into castings of various kidids. into poses, ship.building among pudded hecl shee suited for a variety of pur-
most of the vessels sui.t br one of the largect írms in Liverpool are constructed entirely from stecl plates made at Horde.
The Aremphis Bulletin says that the gold discoveries in the countles of Pols and Sevier, arkansas, are still proceeding, white the indications have proved so enco, Aly the winter's snow ancl cold has not been able to sus pend operations nวw in progress.
There are now about ia,uen miles of rainmay open to travel in France, Every hine is rennurerative, some paving original st ockho lders from 20 to 25 per cent, and it is claimed chat passonger'3 are conveyed by them with more
regularity, safety, and comfort than elsewhere in Earope. Within elghty years, at the fartheat. fll these hnes will have reverted to the Governmen and become practically pullic property.
M. Goudn, some ycars aqo, made exceedingly hard fron by combining it
with a sinall quantity of boron. It is now said that he has produced an with a sinall quantity of boron. It is now said that he has produced an equally hard material by combining finsed cast iron with phosphate of iron
and peroxyde of manganese. The mixture caniot be forged, but is easils cast.
The Boston and Providence rallroat are constructing a bridge from India Point, over the Soekonk river, on a plan which cmbraces some new features.
The whole fength of the bri tge is 8 is fuet, and che supports in The whole length af the ori ige is 8 in fuet, and che supports in the river arc
iron cylinders filled with wooden piles and concrete. Six of these cylinder are six feet in diameter, and coutain twelve piles, which wcre driven into th mud forty f et, the cylinders being sunk ten fe fes. Iron cylinders filled with concrete have bsen used brfore, but driving pilcs wit
bining of wood and concrete is a new experimeut.

3 ecent gamerian and foreign zatents.

Cottonand hay Press.-Willizm Russell, atlanta, Ga.-This invention relates to that class of pre ses in whice the power is app ied to the foilow block by revolving the pres3 box. Thp improvement consist8 in working the
follow blockupon two screw ro's, ina devicefor causing the follow block to Follow blork upon two screw ro. s, in a devicefor causing the follow block to tionary orporta jle press, and to be worked either by rotating the press boa upon a fixed wheel, or rotating the wheel while the box is stat onary. Extension Coal Siute.- Jacob Heatherington. Bellaire, Ohio This in. vention relates to coal shutes which are used on the banks of $\cdot \mathrm{r}^{\prime}$, and at Wharves, fordiscbargh, coal from cars into eteamboats and other vessels, o vessels in different positions. and at different dithances from the shore. Combined Steam engine and üane Mill.-John Moore, Madison. Ind.Thisinvention relates to a cane mill, the frame of whici is so constructed as to be susceptibe of receiving such parts of a steam engine, as would be sand frame that thc rollers of the mill can be reaiily removed theretrom nection with snch cane mith, to be used for threshing wheat, driving a cir cular or a srag sav, a shingle or a lath machne, a straw or hay cutter, a grinc ing-mil or corn, and for many other purposes.
 beth, N. J.-This invention consists in emmbioing a scetw wrench with a claw hammer in such a manner that the device may be usel etther in the
capacity of a claw hammer cr a wrench witu as great facility as if it were made for either purpose alone.
Beehive.-W. X. Singleton, springtela, Inl-This invention relates to an improvement in the construction of beehives, and has tor to object the
wintering of the becs in a perf ct manner, keeping thom warm and dry, to which end a thorough veritiation of the hive is obtained, and due proviton made for the absorption of all mols ;arc.
PUarp-Jas. Vaughn, and John Magee, đalena, ill.-This invention consists in a novel corstruction and arrangement of the various parts composing
the pump, whereby great effectivness and masy advantages ara securod.

