and has its peculiar features (f mark, among which may be mentioned the handsome "council chamber" wherein the managing editor daily meets his staff to confer upon the af fairs of the day, determine the course to be taken, and assig to each his rôle in the next morning's editorial demonstration. Near to this is the manager's private office, and connected with it an inner sanctum where a Wheatstone's telegraph com-
municates with the senior proprietor's residence on Washing municates with the senior proprietor's residence on Washing-
ton Heights, eight or ten wilcs distant, by a private line of ton Heights, eight or ten wiles distant, by a private line of
wires erected expressly for the purpose. The library is a wires erected expressly for the purpose. The library is a

- large apartment not yet fitted up, designed for shelves from large apartment not yet fitted up, designed for shelves from
floor to ceiling, accessible by stairs and balconies, and to con tain thousands of books of reference on the innumerable subjects constantly arising in a daily paper. The numerous ed itors and editorial writers have their separate apartments on this floor, and the reporters' room has accommodations for more than a dozen at once. Thero is also a reception room furaished with files of the daily papers, and a doorkeeper al ways in attendance at the entrance, to admit or exclude. The proof-reading room is a good-sized apartment on the floor be neath the compositors', connectod with the latter-like the editorial and publication offices-by small hand elevators and pipes. One of the excellent features of the system is the index office, where every event and subject noticod in the pape is indexed daily, and may be referred to in a moment, many years back. For system, completeness, and extent, the now
Herald establislmenl, editorial, mochanical, and commercial, Herald establishmen 1 , editon
is probably without a rival.

For the Scientific Amorican.

the fifteen-mog ball vs. armor plates.

The fifteen-inch cast-iron navy smooth bore cast by Alger, of Boston and sent to England for tho British ordnance offi cers and iron plate commissioners to experiment with, underwent its pr liminary trials for "velocity, range, anid accuracy," at Shoeyburyness, on the 27th June last. Fifteon rounds were fired with cast iron balls averaging a little more than 450 pounds each.
The first three rounds were fired with 35 pounds of tho "mammoth grain" powder. Elevation 2 degrees; range, 711, 740,737 yards respectively ; velocity of ball averaged 900 per second ; deviation of shot, $\mathrm{T}^{\mathrm{f} 5} 5$ of a yard to the right.
Next three rounds with 50 pounds " mammoth grain.' Elevation as before ; range averaged 987 pards. Velocity of ball, $1,110,1,120,1,133$ feet per seco tion from 2 to 32 yards to the right
Next round, 60 pounds of " mammoth grain" powder-ele vation the same. Range, 1,138 yards; velocity of ball, 1,210 feet per second; deviation of shot, $1 \cdot 4$ yards.
Next three rounds with 35 pounds of En
Next three rounds with 35 pounds of English powder of the following character and composition: Number of grains
to an ounce, $500 ;$ niter, 75.3 per cent; sulphur, 10.3 ; char to an ounce, 500 ; niter, $75 \cdot 3$ per cent; sulphur, $10 \cdot 3$; clar
coal, $14 \cdot 4 ;$ moisture, $1 \cdot 07$; density, $1 \cdot 74$. Elevation the same; average range, 873(?) yards; velocity, 1,044 feet per sccond; deviation of sbot, ninth round "flew absolutely straight;' greatest deviation of the other two, 1 yard.
Next three rounds with 50 pounds of tho same powderelevation as before. Last round gave a range of 1,140 yards, with a velocity of 1,214 feet per secona. Devacion on yards.
Two rounds were then firell with 60 pounds of the "man
oth grain" powder, with about the same results as the moth grain" powder, with about the same results as the other rounds with the same powder.
Thess proliminary trials seem to have astonished the British artillerists not a littlo, withrespect to both velocity, range, and accuracy. Enginecring remarks: "After Thursday's experiments we trust we shall hear little more of this parrot cry about low velocity;" and "As regards accuracy, we fancy the results must have surirised some of the judges not a little." Not only were the British artillerists astonished, but
it was shown that one of the most distinguished of this fraternity, Captain Noble, of the Royal Engineers, who wrote the elaborate report to the Ordnance Select Committee, did not understand certain clemonts which should be regarded in computing the effect of large spherical shot. This officer, in the report alluded to, after extoling the power of the 9 :inch wrought-iron Woolwich rifle, the favorite English gun, made a calculation which seemed to prove that the 15 -inch American smooth bore was a mighty poor concern. These calculations, together with the termination of the gallant Captain's report, in which he pool-poohed the American gun, seem to have been extremely gratifying to the British jouroalists. Ponderous leaders were written, and Lord Elcho was for tho time pretty well put down for his Parliamentary attacks on the extravagance and inefficiency of the Ordnance Department of the government. He was for the time looked upon ${ }_{\text {pretty }}{ }^{\text {Whard. }}$
On page 30 of his report, Captain Noblo sets forth as the result of lis calculations on the American smooth bore, that with 50 pounds charge of English powder and a 484 -pound
spherical shot a velocity of 1,070 feet per second will be the spherical shot. a velocity of 1,070 feet per second will be the
result. This is cquivalent to a dynamic force represented by result. This is cquivalent to a dynamic force represented by
$8,658,760$ font-pounds, and $8,658,760 \div 50=173,175$ foot-pounds to cach pound of powder.
Now on the trials for range, velocity, etc., which are given above, it is seen that Captain Noble himself propelled the 450 -pound 15 -inch ball with 50 pounds of English powder with the velocity of no less than 1,214 feet per second. The dynamic force of this ball was therefore represented by $10,328,400$ foot-pounds,or $10,328,400 \div 50=206,570$ foot-pounds to each pound of powder, that is, $206,570-173,175=33,395$ foot-pounds more energy per pound of powder than stated in the power of the gon.

In no case which has fallen under the observation of the writer has a pound of powder in the English 9 -inch rifle de celoped a greater energy than 175,000 foot-pounds; this with a 250 -pound
Having thus shown that Captain Noble made a mistake of 1,569,634 foot-pounds in his calculations based on a charge of but 50 pounds, let us turn to the trials which took place at
Shoeyburyness in July last with the 15 -inch gun against arShooyburyness in July last with the 15 -inch gun against ar mor. The target was constructed of John Brown's celebrated solid iron elabs, 8 inches thick, laid on a teak backing 18 inches thick, placed on the ${ }^{\frac{3}{4}}$ inch inon skin of the ship, to ivhich wero secured "a doublo number of supporting ribs." It is almost unnecessary to remark that such a cuirass as thi is not carriced by any French or English iron-clad, and that tho Warrior, with her 41 -inch plates and 18 inch teak backno Werrior, with her 4 -inch plates andity of the iron-clads of the powers alluded to; and bearing in mind that the shotof the powers alluded to; and bearing in mind that the shot-
resisting power of solid slabs varics as the square of their
 thickness, the immense differonce bo
and the target fired at will be seen.
Against this target three rounds were fired from the 15 nch gun, as follows:
First Round-Range, 70 yards ; American cast-iron spherical shot, weight 453 pounds, diameter 14895 inches; charge 60 pounds of "mammoth grain" powder ; velocity, 1,174 feet per second. The effect, according to the London Mechanics Magazine, was as follows:-"The shot struck the target near the horizontal junction of the armor plates, nipping about two inches only of the lower one, and smashing a dcep indent of fourinches into tho plate, rebounded nearly entire-the striking face being flattened and a fow largish fragments striking face being flattened and a fow largish fragments
splintered off-twelve feet back from the front of the target. The armor plates wero scparated from each other vertically The armor plates wero separated from each other vertically
at tho left edge about two inches, the space tapering along at tho left edge about two inches, the space tapering along
the wholc plate to the right. The buckling from the indent extended over forty-ono inches of area, and at the striking point (three feet from thie left edge of the target) was inward to the extent of five inches," and the offect on the rear of the target was to bend the six supporting ribs " some inches," and to "slightly cracl" them, and six butt-joints of the skin plates were opened along their entire length.
Sccond Round-liange the same. Pontypool No. 6 cast-iron spherical shot, weight 452.5 pounds, diameter 14.89 incbes; charge same as before. According to the same authority, charge same as before. According to the same authority,
tho effect was that the ball "struck about two feet six inches tho effect was that the ball "struck about two feet six inches
from the right end of the armor plate on the median line. from the right end of the armor plate on the median line.
Half the shot stuck in the indent (scven inchess). the other Half the shot stuck in the indent (seven inches). the other
half splintering ofr to a ragged, nearly flat facc. Buckle on half splintering ofir to a ragged, nearly flat facc. Buckle on
the vertical linc; three inches at the middle of the width of the vertical line; three inches at the midde of the width of
the plate, and on the horizontal line, 1.6 inches, extending over a surface of five feet,"
Third Round-Firth's steel spherical shot, tempered in oil, weight 498 pounds; chargo samo as before; velocity 1,134 feet per second ; it pierced the plate 8.2 inches. The 14 echanies' Mugazine says: "It struck about five feet from the left end and a foot from the top odge of tho lower armor plate, and stood out from its front perfectly entire (except six or eight radiating narrow fissures) for about eight inches, the romainder being buricd in the indont it had made in the plate."
Now in order that the reader may have a correct idea of the relation between the power of tho 15 -inch gru and the resisting capability of this tremendous target, it will be enough to state that about 40 per cent less than the real power of the gun was employed in these trials, and as an examination of
tho results show, a slight increase in the velocity of the big balls would have jut them through the target. In short, as a cotemporary romarked, "what the effect of ten pounds moro powder would have bcen, was draarily confessed by all the spectators of the trial." "The Hercules," says the London Herald, "ought to keep these missiles out; but sho is not yet afloat. But it is something essential to know that henceforth no English man-of-war could be laid broadside against an American ship carrying guns of this caliber."
The English journals, both scientific and popular, have made a curious mistake with regard to the strength and quantity of the powder employed by us in the 15 inch gun. They call the " mammoth grain" powder used in these trials "American" powder, in contradistinction to their own, and state that sixty pounds of the "mammoth" is the maximum charge. The following extract from the instructions of the Naval Ord nance Burcau, issued during the war-April 1, 1864-while the experiments for endurance with the 15 -inch gun were progressing, will show how very much less than the real power of the piece was used on the late trial: "Sixty pounds may should be used, as 35 pounds of this kind gives a greater range than 50 pounds mammoth powder."
Thus it is seen that the weight of the charge of "mammoth grain" used on the trial against the English target was equal to less than 42 pounds of such powder as is always used in the 15 -inch navy gun, and 60 pounds of our powder gives a
velocity of over 1,400 feet, against less than 1, velocity of over 1,400 feet, against less than 1,200 obtained on
the English trial ground against their target. Remembering that the power varies as the square of the speed, it cannot fail to be seen that the proper charge would have pierced and smashed this tremendous target. Seventy pounds of our cannon powder has been frequently employed on the trial ground, and a few months since a velocity of nearly 1,600 feet per second was achieved with the 15 -inch gun with 100 pounds of " mammoth grain."
Perrhaps the natural delicacy of John Bull has made him fearful of injuring the Yankee gun, but it is much more likely that his great care of the gun is due to his fear, not of burstat the same time of bursting lig target and his reputation at the same time.

GUNPOWDER--.-ITS MATERIAL AND MANOFACTURE.

The origin of this composition, which may lee considered, next to steam, as the most influential agent in human pro gress, is involved in hopeless obscurity. It certainly was known to the Chinese and Hindoos at a very early period The Chinese histories make repeated mention of it at a time when European nations were sunk in semi-barbarism, and Philostratus in his life of Apollonius Tyanæus speaks of the Oxydrace, a people living between the Hyphasis and the Ganges, whom Alexander declined to attack because "they come not out to fight those who attack them, but those holy men, beloved of the gods, overthrow their enemies with tempests and thunderbolts shot from their walls." Hercules and Bacchas, who from Eggy t overran India, were repulsed by these people "with storms of thunderbolts and lightning hurled from above." The invention of gunpowder has been attributed to a German monk and alchemist of the 14th century, named Schwartz, and also to Roger Bacon, commonly known as Friar Bacon, who lived in the 13th century. But it is certain the latter referred to it as a composition already known as a scientific toy or means of amusement, and if so the claims of Schwartz who lived years afterward aro of no value. It is somewhat remarkable that to ministers of the gospel of peaco should be attributed the credit of inventing such an agent for the destruction of human lifo. It is singu lar, also, that the composition and the proportions of the constituents of gunpowder should remain radically unchanged from tho earliest period to the present time.
Qunpowder is composed of niter, charcoal, and sulphur ; according to Benton the proportions used by the United States government are niter, 76 ; charcoal, 14, and sulphur 10. According to the same authority the parts performe by these iugredients are shown by the following table

COMPOSITHIN OT © UNPOWDER
$\rightarrow \substack{\text { mirforf combu } \\ \text { parts of carlon, }}$

A gunpowder can be made of niter and charcoal alone ; but
is is not so strong as when sulphur is present; beside, the substance of the grain is friable, has considerable affinity for moisture, and rapidly fouls the arms in which it is used. Theoretically, sulphur does not contribute direct'y to the explosive force of gunpowder by furnishing materials for gas, but by uniting with the niter it affords a large amount of heat, and prevents the carbonic acid from uniting with tho nitrate of potassa, or niter, and forming a solid compound, the carbonate of potassi. It is to the heat and carbonic acid thus formed that gunpowder mainly owes its explosive force. Niter does not absorb moisture from the ordinary atmosphere, a very important quality in the principal ingredient of gunpowder ; it is decomposod when strongly heated and oxy-
gon is evolved at first; finally nitrogen is given off, and peroxgon is evolved at first ; finally nitrogen is given off, and perox-
ide of potassium remains. When heated with combustilse ide of potassium remains. When heated with combustible materials it is completely deprived of its oxygen; this is the part it plays in gunpowder. Charcoal is an absorbent of oxygen and very combustible. In burning, a large amount of carbonic acid is cvoived. When first prepared by heating in a closed iron retort, it will, if pulverized, nbsorb so much of the oxygen of the atmosphere and so rapidly, as sometimes to ignite by spontancous combustion. The properties of sulphur in gunpowder have been already described.
The explosion of gunpowder is a deflagration in which the combination of the ingredients is completed at once, the whole, or nost, passing almost instantly into a gaseous condi tion by the influence of heat. The gases are combinations of the carbon of the charcoal with the oxygen of the niter ; the sulphur serving to decompose the nitrate of potash by combining with its metallic base and thus setting free another atom of oxygen for producing more carbonic acid. The accession of heat thus engendered, also greatly adds to the effect. The sulphur and niter aro refined to a point of almost absolute purity, and great care is exercised in the preparation of the charcoal and in the selection of the material from which it is produced. It is usually made from the twigs of the black dogwood, llack alder, or the willow, the latter being exclusively used in this country. It is charred in closed retorts of cast iron at a low temperture, as it is found that the lower the heat by which the change is effected the greater the combustibility of the charcoal. Each of the ingredients is ground to impalpable powder and bolted. They are then weighed in proportions and sifted into a trough or cylinder in which are revolving fans which intimately mis the constitrents.
They are then taken to a mill similar to that known as the Chilean mill for grinding gold-bearing quartz, which is simply a verticalshaft, having on two projecting horizontal arms immensely heavy rollers of cast iron which revolve on a circular cast iron bed having wooden sides. From forty to fifty pounds are put into the mill, moistened with water, and ground by revolving rollers. It is in this grinding process that those fearful accidents occur which occasionally horrify the public. The mill is isolated and at a distance from others,
which are protected by trees or earth traverses. It requires which are protected by trees or earth traverses. It requires
from three to five hours to complete the grinding process. irom three to five hours to complete the grinding process.
If a particle of grit gets into the mill during the process the cosult is almost unavoidably an explosion.
When taken out it ig dried and presents the appearance of grayish black cakes called mill cake. It is then sprinkled with water and spread on brass plates in a press and subjected to immense pressurc. This press is a hydraulic press, as the flying dust of the powder might become ignited by the friction of a screw. It comes out in thin, hard cakes, and is broken and granulated by being passed between fluted rollers, one series after another, being passed from one to the other over sieves which have a reciprocating or shaking motion.

The powder is then assorted by means of other sicves and the dust returned again to the press. The edges or corners of the grains must next be worn off to prevent loss from dust while in transportation. 'This is done by revolving a quanti ty in a tumbling box or barrel, in which it is also glazed by having the barrels lined with woolen. Drying on sheets in a heated and ventilated room completes the process.

Missonri Tin.

We believe that the discovery of these mines has notas yet seriously influenced the tin importations or affected the market to any considerable extent. "Prospects" are excellent, and speculators are confident, but results do not seem to justify the extravagant stories so prevalent in the interested re gions. Lands in Madieon and Iron counties, hitherto consid ered worthlcss, havo suddenly acquired a fabulous value Like the mining and oil manias, the tin fever has assumed a contagious form and is now ferociously raging in all the neighborhood around. As to the discoveries of these tin deposits we have seen no statement. A Dr. Farrell, and Dr. A.
C. Hoch, are named as rival claimants. Each, our authorities state, some nine or ten years since was impressed with the be licf that the ore existed in immense quantities in these regions. The former gentleman regards southeastern Missouri as a vast storehouse of mineral wealth; iron, lead, zinc, cobalt, copper, barytes, kaolin, and nickel being abundant "The tin most abuudant here" writes a correspondent of the Chicago Republican, "is the greenish brown, crystalized tinstone, very leavy and hard. However, since a few Cornwall miners have been employed in prospecting, beautiful block in-crystals have been found tho beds an where streams, and some of these are so similar to the tin-crystals from European mines that they would be said by a casual observer to have corne from the same lode or vein.
In the well-defined lodes, no shaft has been sunk more than 12 or 15 feet, and at this depth ore has been obtained from immense deposits, which will, in the opinion of Cornwall miners, yield from ten to 25 per cent. In Cornwall some ores are worked at a profit which yield only two per cent., and the general average of all ores, for which they go from 1,000 to 2,000 feet below the surface, contain from 4 to 15 per cent, and have heretofore been considered tho richest of any worked in the world. Besides this, the mineral here crops out in hill-sides, thus greatly lessening the labor and cost of obtaining the mineral, compared with the Cornwall mines.
The "Champion lode," at "Tin Mountain," is betweon 500 and 600 feet wide, standing nearly perpendicular, with a slight dip toward the west. This deposit or lode runs north and south, 20° east. It is cut across by a small stream fed by three springs, and at the crossing of this stream a branch lode runs north, 5° west, and both the so-called main lode and the branch appear to run through a large porphyry covered hill. On the opposite side of the hill, at about the same elevation, lodes have been discovered of sufficient size and richness to satisfy the owners that it is their interest to erect furnaces, and develope the mine without unnecessary delay.
The deposits I have visited (some of which I discovered) are in townships 31 and 3λ, range 6 east, in Madison County; but from specimens furnished mo from other localities, I believe other deposits will be found in Iron and Wayne counties, and that the tin region will embrace an area of 20 or 25 miies The distance from the localities where tin has thus far been found, in Iron county on the west to Madison in the east, the extreme distance between the remote lodes thus far known (the minerals of which have been tested chemically and practically), is 24 miles.
Men are yet incredulous, and can hardiy believe that tin really does exist in Missouri, or elsewhere in the United States. Capitalists go to the tin region, collect specimens, ask scores of questions, and still cannot believe what is told them by Cornishmen there employed. They ascertain the price of the land, and are afraid to buy even at the low price, and " for timber land ;" come to the city to have an analysis made, see the tin brought out, and finally return to buy the land, and find it sold for fourfold more than it could have been purchased by them four days before. "Our doubts are traitorous, and make us lose the good we oft might win, by fearing to attempt."
Several thousand acres of land have been purchased in this region by parties who have evidently designed to secure all the tin lynd, and much of it has been entered at government price; but the probabilities are that still other good lodes will be found outside of the limits thus far explored. This region is generally heavily timbered with pine, oak, hickory etc., furnishing an abundance for building, fuel, etc., and well watered by cold, spring-fed brooks.

Return of "Now Island" Expeditions.

The schooner Leal had returned to San Francisco from th search for the island reported discovered in longitude 15050 W. and latitude 4040 N . The search, though extending as far west as 100 degrees, and from 39 to 41 north, was unsuc cersful, no land being seon. In the immediate vicinity of the reported location of the island a terrific sea was encount cd, caused by a southeast crale. During the search a tract of dis colored water wasfound, extending about 250 miles south-eas and northwest and about 86 miles wide. Attempts were made to sound, but the sea was mo rough that it was not sat isfactorily done, and no bottom was found with 150 fathoms linc. The water was, however, of a greenish color, similar ot that found between the bar and the Farralones off San Francisco, and it was believed that comparatively shallow oundings could be found in searching in calmer weathe
some of which, as well as several large birds rasembling boobies, alighted on the vessel. Immense quantitics of "Portu gese Men-of-war" were seen, the sea at times being literaily stilin with them, they resembling a sheet on the water and ter and bire violence of the waves. From the discolore wa tance from land), (which latter are not ist exists not very remote from the locality visited Cupt, Matthew Turner who has roturne from similar search mode in the soloone who dicated soundings was found near the reported locality of the land. This tract extended some 200 miles one way by abou 60 miles the other. Soundings were attempted, but no bot tom was found with 120 fathoms linc. Capt. Turner believe that soundings can be had if proper search is made for them, and that in such case good fishing ground will be had. Capt. Turner was three days exploring for the island, but, although he searched diligently from 149 to 151 west, and from 30 to 41 north, found no signs of land.

OFFICIAL REPORT OF

Patents and Claitis

Issued by the United States Patent Office,
parturs are granted For seventern yaiki the tollowion

In addittion to which there are some emall reven

67,625.-Spice Box--Wm. E. Andrews, Cambridge, Mass. ers, made substantially as describedand for the purposes set forth.
di. The comblnation or the extension, F, ot the fronc of the drawer with

 ment to remove bleminishes trom horses and other animals, substantial
hereninget forth and decsibed.
67,628 . -WAGON BEDs.- Riley Bratton, Oskaloosa, Iowa.
 a wagon bed may be easily and quickly taken apart and put together.
67,029.-Filling ror Safes.-H. H. Pryant, Poston, Mass. I claine the uqe of sponge as a filling for a safe, or other structure of a simi-
Iar nature, or anv other porous and absorbent sufstanco that 13 its substan tial equivalent, as and for the purposs hereln set forth.- J. R. Burdge,
67,030.-ADJUSTABLE REST FOR LATIES.- J.

 67,632.-Brick Cars.-John K. Caldwell, Pitisburgh, Pa.

 1nan), New orlean, LLation of the two series of revolving disks, B B B and

set forth.
67, ,i35.-Clotii Plate for Sewing Maciine.-D. H. Craige

 Thore bitto
deseritibd.
s, Th.
more butto
 antions can be turned, substanially as and for the porpose set fort h.
67,630.- LadDER. - Charles Croley, Dayton, Ohio, assignor to
 and separahie or hinged ladders. A B, for the purpose set torth. Wheeling
O7, f337-STEAM GENERATOK.-James M. Willon, W
 2d, The combination of the boiler, B, pipes, E F m, and mud drum, M, as
nd for the purpose set forth.

 I clatm dirylifing the fhterior of the cap or box of the traveler for the lilb
boom tith two or more rollers above, and two or more rollers below the bar,
 tion upon the several parts, for the purposis and in the manner substanially
157,640 .-Mode of Striking Gongs or Bells.-Thomas G.

 Ohio.
I Llaim the combination and arrangement of the adjustable and jointed or
hinged concave wast board, x, and application thereof to the cylindit, H, by
 pose set forth.
(i7, 643 . MIOP Head.-O. S. Garretson, Cincinnati, ©hio.
I clam masing the collar of the ioose jaw in two parts so that the nut,
 ©7, i44 - Ino indNG. MACHINE.-G. Gilbert and A. N. Allen,
New Haven, Conn.

 67,646.-Reveriberatory and Cupola Fuinace.-J. Durell

 Iclaim the cross wre, D, when cominected with the concaved bar, fors. the
purpose set forth, and che swnggug hooks, when combined with the slat, for

 67,64y.-Beehive.-A. H. Hart, Stockbridge, Wis.

 geribed.
67, $651 .-T W E E R ~ F O R ~ B L A S T ~ F U R N A C E .-B e n j . ~ H . ~ H i b l e r, ~ M c ~$

 I claim the use of a medical compound combining the medicinal properties
of the ingredients speched mixed tog ther 11 tbout the proportions andsub-

 67,660--Grain Drill Tube.-S. K. Liehter, Thos. Harding
Joseph Curt:s, Hamilton, ohio. Joseph Curtis, Hamilton, Ohio.
1st, We claim the tube, Fg. 1, made with opea coils in the manner for the

