

Smarima

ous pecuniary loss to his employer, simply because it is difficult to fill his place
These considerations have nothing new in them, but because they are so trite and hackneyed they are not enough considered by apprentices. We earnestly invite their attention to the subject, believing it will be to their present and prospectiveadvantage to deal honestly in this as well as other respects.

MEASURING MECHANICAL POWER-.--THE UNRELIABI ITY OF BELTS.

Probably no one thing is provocative of more dispute between landlords who let power and tenants who use it, than the amount thus let and used. The landlord, assuming to know the actual power of his engine and the amount used by one tenant, concludes that another employs a larger propor tion than he pays for. The tenant points to the width of his belt and bases the amount of power furnished him on that.
Now, scarcely anything can be more deceptive and unreliaNow, scarcely anything can be more deceptive and unrelia-
ble. A belt running horizontally and another vertically, al ble. A belt running horizontally and another verticaly,
though of the same length and width, are two entirely differ ent mediums for the transmission of power. The distance between the driving and driven pulleys is another disturbing element in the problem; the condition of the belt itself, the surface of the pulleys, whether the belt is a "quarter turn," a cross belt, or an open belt, are all difficulties in the way of a correct estimate of the amount of power transmitted by them. Neither do we know of any dyna
the shaft which is entirely reliable.
But proper means of estimating power must be looked for in the prime mover; and in the measuring of the amount of power from it diverted to any portion of the work per-
formed by the engine, may be seen one of the advantages of formed by the engine, may be seen one of the advantages of the steam engine indicator. This implement has not, as yet. attained the notoriety to which it is entitled. There may be doubts whether it can determine the absolute power of one engine when not compared with another, as some mechanics claim; but there is no reason for supposing it is not valuable as determining the relative powers of different engines and the power of the same engine under different circumstances. This being the case, it is a comparatively easy matter to as certain what amount of the whole power of the engine is diverted to one point or another. Alt the work, except the
driving portions-the necessary shafting-being thrown off, driving portions-the necessary shafting-being thrown off,
let "friction diagrams" be taken. These give the amount of power exerted to drive the intermediates. Then let Mr Smith put on his average amount of work and have another Smith put on his average amount of work and have another
set of diagrams taken. This properly noted, let Smith throw set of diagrams taken. This properly noted, let Smith throw
off his work and Jones put on his, and proceed as before. A off his work and Jones put on his, and proceed as before. A
comparison of the different diagrams will infallibly point out the exact, and the relative amount of power used by each

Every engine should be indicated. What is the use of talking about the "nominal" horse-power of an engine One man building an engine with cylinders 7 by 10 inches and another one 8 by 10 inches, and another 8 by 8 inches, all claim for their respective engines the same horse-power One may be right, but if so, the others must be wrong. Only the indicator can give the test. It is fortunate that it ha come into use. It will decide and has decided disputes which might puzzle a "Philadelphia lawyer." It is the great might puzzle a "Philadelphia lawyer." It is the great friend of the engine builder, the engine runner, the hirer of
power, and the furnisher of power; a benefit to the buyer power, and the furnisher of power; a benefit to the buyer
and seller of engines, the manufacturer, and user. Its use is and seller of engines, the manufacturer, and user. Its use is
daily becoming more and more known and its benefits mor and more appreciated.

THE EAST RIVER BRIDGE.

Operations upon the projected bridge which is to connect this city and Brooklyn, have actually begun. For several days past workmen have been engaged on the Brooklyn side of the river, in making borings to determine the character of the substratum where it is purposed to build the piers. The plans which have nearly been perfected, contemplate the erection of a structure of such proportions that a brief state ment in regard to some of its important features, must be of more than merely local interest.
The narrowest part of the East river is between Fulton ferry slip, Brooklyn, and near Pier 29 on this side, and here will be located the towers. The initial point of the bridge in Brooklyn city will be, without doubt, at or near the intersecting of Sands and Fulton streets. For the other terminus three localities have been proposed, but the New York City Hall park will, in all probability, be the one selected, the to tal length of the bridge then being 5,862 feet. The bridge proper will be eighty feet wide, increasing for five hundred feet on either end, to a width of one hundred feet. There will be four roadways, two each for going and returning passengers, and two for cars or carriages. Above these road ways is to be an elevated promenade, sixteen feet in width the center of the bridge will be 130 feet above high wate mark. The towers for suspending the cables, each 150 feet high, are to be located inside of the pier lines established by eet. Tha a distance apart from center to center of 1 , 0 100, and the company propose to utilize all the ground ove which it thus passes, by making stores and warehouses be neath. Flights of stairs leading to the corners of cross streets, will do away with the necessity of obliging passen gers to travel to the main entrances.
The lowest estimate of the cost of this bridge is $\$ 6,000,000$ and the company who are to build it must have a capital of not less than $\$ 8,000,000$. Many details of construction can not now be given, but will appear as the work progresses. The first year's work will be simply lax
ing the foundations, and four or five more must pass before the undertaking will be completed.
The proposed bridge promises to be a magnificent structure; but the stockholders will pay dearly for the whistle. For the six millions which this one bridge is to cost, seven or eight tunnels might be laid down across the bed of the river, one for each of the principal streets of Brooklyn. Through these tunnels steam cars might run and carriages pass, affording quicker, safer, and better facilities for communication than a single suspension bridge.

THE CAREER OF A WORKING MAN.

We do notintend to select an exceptional case in noting a few facts in the life of the mechanic whose course is the sub ject of this paragraph : this case is chosen because it is not exceptional; there are hundreds of a similar character, and exceptional; there are hundreds of a similar character, and
the encouragement to young and struggling mechanics is all the more valuable.
A short time ago the workmen employed by Mr. John Snow don, the proprietor of the Snowdon Iron Works, of Browns ville, Fayette county, Pa., made him a presentation as an evi dence of their respect and esteem for him as a man and em ployer. Fifty years ago Mr. Snowdon came from Yorkshire Eng., and settled in Brownsville. He went to work as a black smith for one dollar per day. After a time he started busi ness for himself, his bed the fioor, his table a box, and his seat a block. He gained slowly, unt:l he succeeded in erect ing and putting in operation a foundery, machine, and pat tern shop, employing two hundred hands. He has built the tern shop, employing two hundred hands. He has buitt th machinery for about three hundred steamboats, some to run on the Monongahela, on which Brownsville is situated, some
for the Ohio, Missouri, Mississippi, the lakes, and gunboats for the Ohio, Missouri, Mississippi, the lakes, and gunboats
for the Government to run on the Rio Grande and the sea for the Government to run on the Rio Grande and the sea
Iron bridges and all descriptions of engineering machinery have also formed a part of his manufactures. For more than forty years he has aided in building up his section of th country, and during a good part of the time furnished employ ment to a large number of workmen.
Many men have done greater things, met with more nota le success and been better known in the world, but $\mathrm{Mr}^{\text {r }}$ Snowdon's course is none the less instructive because unob trusive. It is simply that which is open to hundreds of others who unite with common capabilities for business, in dustry, perseverance, and will.

COMPARATIVE WEIGHT OF ENGLISH AND AMERICAN SCREW ENGINES.

In the Paris Exposition there are the engines for the En glish sloop of war Sappho, built by Penn from designs of the Chief Constructor of the English navy. The Engineer give heir dimensions and weight, by which it appears that al though calculated to work up to 2,000 indicated horse power the total weight of the engines is but 74 tuns. These engine are not exceptional ; there are many similar ones in the En glish navy.
On the other hand, the engines of the Lackawana and other screw sloops of our navy are reported by the board of examin ers-composed of such men as Copeland, Bromley, Wright Hibbard, Everett, Coryell, Merrick, Bartol, etc.-as being of only 1,000 horse-power, yet they say if proper proportions had been observed 60 tuns of weight might have been saved Query: is there no room for improvement in our naval machinery?
TRIAL OF STEEL RAILS----NOVEL RAILROAD OFFICE.
The New York and New Haven Railroad Company are test ing the steel railin a section between Port Chester and Green wich. The President of the road, Hon. W. D. Bishop, former y Commissioner of Patents, is an energetic, practical man, and we shall look to him for a report on the subject which will be conclusive of its practicability. Mr. Bishopis the first railroad president to adopt the plan of locating his office on wheels. His office is a neatly fitted car, and his headquarter may be truly said to be any where between New Haven and New York that his presence is required.

AGRICULTURAL ENGINEERING.

Once in four years the Royal Agricultural Society offers prizes for the best portable and fixed steam engines (of dimensions prescribed within certain limits) entered for trial at the Worcester show in 1863, and that for this year has just been concluded at Bury St. Edmund's. The various portable engine factories in the kingdom, perhaps forty or fifty in number, are now able, if fully employed, to complete upwards of fifteen hundred engines yearly; a fact sufficient to show both the extent of the trade and the competition which attends it The Royal Agricultural Society's prizes are, therefore, keen y contested for, and, although the engines entered for tria are generally of a more expensive, and, possibly, less durable class than those ordinarily sold by the same makers-being in fact, what are known as "racers," only seldom bought for actual work on the farm-it is indisputable that these competitive trials have done, and are doing, much to raise agricultural engineering to the highest standards of efficiency and economy. There are many of our readers who can even now recall the time when, under the practice of the Liverpool and Manchester engineers-in the days of John Gray and John Dewrance, who were always encouraged by that paragon of railway secretaries, Mr. Henry Booth-locomotive engineering was refined and perfected almost beyond all previous expectation, the consumption of coke being diminished from 40 lb . or 50 lb .to 18 lb . per train-mile. There are many whocan recall the time when the Cornish engineers, by emulation and
then greater care whlch it inspired, were raising the duty of
their engines from 30 or 40 up to 70 or 80 millions, and sometimes to even more. And we have more lately seen how, by increased attention to the conditions of marine-engine economy , a consumption of from 5 lb . to 7 lb . of coal per irdicated horse power per hour has been brought down to from $2 \frac{1}{2}$ to $3 \frac{1}{2} \mathrm{lb}$.

Something like these reforms has been introduced into por table-engine practice by the agency of the Royal Agricultural Society's quadrennial trials, and we have this year an engine running steadily for nearly three hours with a consumption of but $2 \frac{1}{2} \mathrm{lb}$. of Welsh coal per effective or dynametrical horse power per hour, equal probably to about $2 \frac{1}{3} \mathrm{lb}$. or $2 \frac{1}{4} \mathrm{lb}$. of coal per indicated horse power per hour, the measurement to which most engineers are better accustomed. Put into Cornish notation, $2 \frac{1}{4} \mathrm{lb}$. of coal per effective horse per hour means a duty of nearly $88 \frac{8}{4}$ millions of foot-pounds for each hundredweight of coal, a result which, we need not say, has been but rarely surpassed even in Cornwall.
This result is, of course, a maximum result, obtained by the exercise of the greatest care in design, in construction, and in working. That in the working was perhaps the most re markable of all, and we say, advisedly that it would have well paid any farmer employing steam powerto any considerable extent, as many now do, to have sent his engine driver or drivers to Bury, even from a distance of 200 miles or more, and to have kept him or them in the show yard during the whole period of the trials, to study the wonderful jockying (and we do not employ the term reproachfully) of eorge Wilkinson with Clayton, Shuttleworth and Co.,s engine, of Robert elles with Tuxford's engine, of John Bristow with Ransomes and Sim's, and of Whitcombe with the Reading Ironworks', engine, the latter when worked to 50 per centabove its nominal power, giving the greatest economy of fuel yet recorded, Clayton and Shuttleworth beating on the trials at nominal power. Not perhaps that the care was so much, if at all, greater than that of railway engine drivers, when working, as theylately did on the reat Eastern Railway, by contract ; but railway practice is not often accessible to portable engine drivers, nor, differing so much as it does from their own, does it so directly carry home its lessons of example. Even if they be not likely to be generally repeated in every day practice, it should be as interesting to the large farmer-the steam farmer we will call him-as to the engineer to observe the expedients by which a little engine, not working within a warm house, but in the open air, is nevertheless enabled to rival, in its dynamical results for a given weight of coal, the triumphs of Cornish and marine and locomotive practice. Not only is the boiler lagged, but it is sheltered from winds and rain, and there was rain and wind in plenty, and more than enough, last week and this, at Bury. The coal is broken into lumps hardly larger than dice; it is fed to a fire hardly threeinches thick (plenty weretold, and some, perhaps, believed, that some of the fires were not one inch thick). The distribution of coal upon the grate is as even as the utmost care can make it; the firedoor is never allowed to
be open a moment longer than absolutely necessary; the ash be open a moment longer than absolutely necessary; the ash
pan is carefully cleared of cinders and lits of unburnt coal, to be added to the fire for the final effort when all the clear coal is gone; the ash-pan damper is regulated with the nicest care, and where not tight in all its joints, all openings except at the bottom are carefully stopped with rags, so as to compel the entering air to pass through the whole volume of heated air contained in the pan; the feed-water is heated by waste steam almost to boiling; the safety valves are screwe maintained to half a pound at one fixed point on the gage ; the slide and expansion valves are, in the best engines, set exactly to the intended work, and the regulater is kept wide open where this is possible, as in many cases it was; the brasses of the engine are left to run as freely as can be tolerated in respect of thumping; the piston packing is in the most perfect condition, neither tight nor loose, as drivers understand the terms; the oiling is assiduous'and just sufficient and everything is done that the driver, with all his wits about him, can think of to prolong the time of work with the quantity of coal so scrupulously weighed out to him. It is here that engine driving, or even boiler-stoking, becomes a profession; and there was a curriculum of technical educa tion, in at least one of its important branches, in the week's trials concluded on Tuesday last. Could the large competing firms make drivers as well as engines, they would surely in crease their hrade in the latter, and ighen pay, in the way of business, or to educate the former gratuitously, for noth-
ing would more hasten the adoption of steam upon the farm, ing would more hasten the adoption of steam upon the farm,
both at home and abroad, than a general understanding and practice of the best principles of engine-driving, so splendidly exemplified in the trials at Bury.
It is difficult to point to any new feature of design which has attributed to the excellent results attained. It is even difficult to say what the results prove as to many questions of plan and proportions which are often discussed by engineers ad, now and then, by steam farmers. Clayton's double cyl inder engine beat his own single-cylinder engine; but thi could not have been.because of this difference in the number of cylinders, since the double-cylinder engines were worke at 80 lb ., while the single cylinders were limiled to 50 lb
This enabled the double-cylinder engines to work more ex pansively, and possibly it will be said with more expansion than a single engine would bear, and still work with uniform ty. With 80 lb . steam, however, the single engines would have run well, cutting off at one sixth stroke, and but one only of the double-cylinder engines tried cut off as short as one-eighth, and only one other as short as one-sixth. The eason for the difference of pressure is, no doubt, that doubl cylinder engines are now oftener made for plowing, and ar
better made for this purpose than common portable engine mostly with single cylinders, which would (not, however, be cause the cylinder is single) not be safe at 80 lb . As a mat ter of fact, the best result attained in the trials, the best per haps on record, was had from a single cylinder engine work ing to one half more than its nominal power-the system of testing the engines not only to their nominal power, but subsequently, to one half as much more, having been intro duced for the first time at the trials at Bury. So, too, som of the engines, which were not doing particularly well, were observed to have strokes more than 12 inches long, aud were hence called long-stroked engines. We heard some good jndges assert that the long-stroke engines would be nowhere yet the best result of all, and that when working to one ha troke of all, viz, 18 inches
Without looking forward, at present to better result the best that have been booked at Bury, we must hope to such results become more general, and that consistently with reasonably economical construction and working. At present ordinary portable engines burn, as they burptat Bury, from 5 lb . to 9 lb . of coal per horse power per hour, or, on the average, twice what they ought. In other words working a 10 horse engine up to 15 horse, for ten hours a day, they burn cwt. to $12_{\frac{1}{2}}$ cwt. per day, so that with coal at 1 s. a cwt., the difference in the cost of fuel between the most economical and the most wasteful engine would amount to 9 s. per day, and the average difference might be taken at 5s., equal, for even 100 days' workjing in the year, to the interest on $£ 500$, or to that on £350 even if 1 s .6 d . extra were paid for a first rate dri ver. The means of economy lie in sound construction, thorough lagging of the boiler, heating the feed water libera ogh lagg in of expansion, in the the loss heat, heat being the true res All this and the most careful firing and fettling of the engine are nec essary to economy. And will other engine makers allow one or two, or even three or four, firms to run off with the great prizes of these Exhibitions? It takes a great deal of mone to carry on business in these days of competiticn, but it is sound policy to expend the money judiciously in building better engines, and with this to keep in sight every means, even to the most refined to secure economy of working. And what wonderful rosults would be attained, too, by prizes for engine driving as well as prizes for engines. If bets wer made on engine races, the winning jockeys would come in for handsome gratuites, as happens with the triumphs at Ep som, at Ascot, and at Newmarket ; and, seriously, good en gine-driving is just now most wanted of all on the steam arms of England
We are almost amused at reading the above from the Fh gineering. It seems strange, indeed, that such care must be used in the firing of the boilers and the distribution of the coal" on the grate; that the "ash-pan should be carefully cleaned of cinders and unburnt coal;" that "all openings except at the bottom-the draft-should be carefully stopped with rags;" that the "feed water should be heated by waste steam almost to boiling; the safety valves screwed to slight y more than the working pressure! and the brasses of the ngine left as free as can be tolerated in respect to thumping," tc., etc.
Surely the experiment should have succeeded under such crcumstances, if there was any merit, whatever, in the en cines. This extreme carefulness to details is impossible in ordinary work, then why should it be observed in competitive trials ? The proper test for agricultural as well as for other machinery is simply to try it under the ordinary and extraordinary circumstances of daily use. The suggestion of prizes for engine riving is a good one, and we do not see ion.
The results of the trial referred to in Engineering were highly satisfactory, the consumption of coal per dynametrial horse power per hour being $2 \cdot 54,2 \cdot 71.2 \cdot 98$, and so on up to 7.99 , We doubt if equal results have ever been attaine in this country. There is no doubt, however, that everything was arranged even to the minutest details to this end. Such results give as much future promise as present gratification

OFFICIAL REPORT OF
Patents and OLains

Issued by the United States Patent Office,

or the week ending august 6, 1867

PATENTB ARE GRANTED FOR SEVENTEEN XEARS tbe following

 In addition to which there are some small reven

67,395.-Machine for Twisting Augera:-W. L. Aldrich
 2 d, , The
nubstane
cination
37,396.-Screw Plate.-Walter Ashton (assignor to himsel

 BT, itb

 and

 67,

 67,403.-Machine for Making Nuts.-John R. Bridges (ag-

 fortho6.-Folding Table.-Julla P. Brown, Boston, Mass.

anget forth
67,407 .-Marier for Sewing Machines.-Sarah F. Brown

 tandin11 , 2e and for the purpose geacired. Cash, Newport, KY.

67,413.-STEAM INJECTIORS.-Naihan L. Clappell (assignor to

 67,410. N. L. L . D For Kettles, Paile, etc.-S. B. Cox, Buff-

