been, the extremely uncertain one of contracting the open ings by which steam is admitted under the ring, or rings to expand them. The obvious objection to such an arrangement is, that it allows the steam to act on the rings with its full force during slow motion, as when a train is starting, while if effective under any circumstances, it will be so only at comparatively high piston speed. The efficacy of such a remedy, if it possessea any, is in fact inversely as the piston speed.
Fig. 1 is a perspective of the piston itself, or the "spider," with its follower and its rings removed, which are shown in Fig. 2. Fig. 3 is a cross section of another form of the piston, to be presently describgd, but which will serve to explain that shown in Figs. 1 and 2. Next to the core of the spider are two narrow internal rings, A, in Figs. 1 and 3 ; surrounding these two outer rings, B, the cross section of which is of L-form, as seen in Fig. 3. The lips of these outer rirgs extend to the whole thickness of the piston. The flange head of the piston, and also the follower, are turned beveling on their edges to admit the steam around the ann.llar space thus formed under the rings, B. These spacesare plainly exhibit. ed at C, in Figs. 2 and 3. Both inner and outer rings are ad justed to the bore of the cylinder by means of the gibs, D, and set screws seen in Fig. 1.
The section, Fig. 3, represents a modification intended for use in vertical cylinders, if considered necessary. The additional center ring, E , is intended to prevent leakage through the cut in the expanded ring and over the face of the unexpanded one, which might occur when the rings and cylinder should become so worn that the rings, when not expanded, should collapse aud leave the surface of the cylinder. The rivets, F , shown by the dotted lines, are placed near the cuts in the L-rings, and are inteaded to hold the outside and inside rings together at that point, and prevent any tendency on the part of the latter to collapse and let steam under that part of the L-rings. Probably, however, if the packing is properly constructed and adjusted in the firat instance, these devices will be unnecessary. In horizontal cylinders the weight of the piston, if properly supported on the set screws and gibs, will accomplish these objects, if the cuts in the Lrings are placed near the bottom side of the cylinder. The steam enters the annular space between the beveled edges o the spider flange and follower and the inner periphery of the overhanging part of the L-rings, and acts only on that part
Patented by Nathan Hunt, Sept. 17, 1867. For further in formation address the patentee, or Sharps, Davis \& Bonsall Salem, Ohio, who will furnish piston heads to order on re ceipt of size of cylinder and piston rod.

amprovoment in Hand Drills.

There are frequent occasions in a machine shop where light drilling is required on work it is inconvenient to bring to the lathe. For this the Scotch or ratchet drill, if the job is heary, is employed, and if light, the breast drill. The placing and working of the former consumes considerable time, and the labor of drilling with the breast drill is excessive and exhaus ting. It is dificult aleo to hold the instrument so steady as no to cramp and break the drill The combination of the dril with tongs and a pivoted be piece, as seen in the engraving obviates these objections.
To the lower jaw, A, of a pair of tongs is pivoted a platen or bed. B, having a hole through its center, which is continued through the jaw for the paseage of the drillings. The upper ia w is formed with a circular flange on which is mounted the cir cular or disk.like base, C, of the drill frame, D This with the frame is , This, with the the be by mean of the tongs by means of tw screw bolts-one seen in the engraving-passing through
the jaw and screwing into the the jaw and screwing into the
base of the drill. These bolts base of the drill. These bolts pass through semi-clrcular or segmental slots, by which the drill frame can be swung around at different angles to the tongs, to adapt itself to the convenience of the workman and the requirements of the work. If desired, the crank by which the drill is driven may be used on the upright spindle, E. It will be seen that the pivoted base or bed, B, willailow the work to adapt itself always to the line of the drill.

In operation, the wor's being placed between the drill and platen, the left hand presses the handles of the tongs to gether, while the right turns the crank; the feed is thus graduated wholly by the pressure of the hand. No further description is required for understanding the construction or operation of this tool. Patented by F. Nevergold and George Stackhouse, June 19,1866. Applications for the whole right or for territorial rights, should be addressed to the latter at Pittsburgh, Pa.
Commissioner of Agriculture.-The Senate on Friday, the 29th ult., contirmed the nomination of the Hon. Horace Capron as Commissioner of Agriculture to fill the position made vacant by the death of Isaac Newton, the former head of the Department.

It is estimated that $10,000,000$ feet of sawed lumber is frozen up in the docks at Bangor, Maine, three fourths of which is sold and waiting shipment,

Corresymadmas.

The Liditors are not reaponstble for the opintons expyesseci by thesg som

mproved Method of Securing Cutters on Boring

 HarsMessrs. Editors:-Thinking it may be of use to some of he readers of your inval uable paper, I have taken the libert sending you a sketch of a new mode of securing the cut er in a boring lar or pin drill. Where the cutters are se
cured, as usual, by a
key, all mechanics know that it is very difficult to set a cutter twice alike; and the notch, which is filed in the cutter, to prevent it from moving endways, is a great source of weaknes often causing the cut ters to crack in hard ening, as well as afte they

A is a cutter, and B a collar, screwed upon the cutter bar . The edge of this collar fits into a notch on either end of he cutter, as shown at D, thus leaving the cutter as strong as possible at the center, and giving it a solid support at the point where support is needed, and at the same time insur ing its always coming alike
Brooklyn, N. Y
Theodore L. Webster.
[The device seems to be eminently well calculated for the upport of the cutter on a boring bar, and is applicable, with but slight moditi sation, to a pin or "teat"drill. Machinist will readily perceive its operation and excellencies.-Eds.

Tides and Their Causes.

The phenomenon of the daily tides of our seacoasts and tidal rivers is attributed to the attraction of the moon upon the eartb-that the moon draws the earth towards it, and that in drawing the earth towards it, it bulges up the water of the ocean on the side presented towards the moon, and drawing the earth and water thus on that side, also draws the earth aroay from the water on the oppnsite side of it, and thus leaves the water bulged up on that side, and in doing al this the effect comes after the cause some three hours, which is termed "the tide lagging behiod." Now if we knew, per se, what attraction of gravitation was, and that it produced this anomaly of force, there would be nothing to question in the matter. But as we only know by attraction that it means drawing to, it is impossible to reconcile the theory of the tides as they run to the attraction of the moon. If the moon is so potentindrawing up, why does it not draw a bulge on the inland seas-our great lakes? I will not discuss the question

NEVERGOLD \& STACKHOUSE'S TONGS DRILL.

of the moon's Apogee and Perigee-its different velocities in different pasts of its orbit, as laid down by the law of Kepler or whether it turns once on its axis in a month, or not, as either theory will answer for its phases, as well as for the face of the "Man in the Moon," but I will endeavor to give a more ratioral theory for the phenomenon of the daily tides The earth revolves on i.s axis and makes a revolution every wenty-four hours, and this moves its equatorial surface near ly a thousand miles per hour. Now the water on its surface covering about three-fourths of it, and being more mobile than the solid earth, is, by centrifugal force, made to rol around the earth, the same as the water is made to move around the grindstone when in motion, a thing familiar to every body that usesthatinstrument. In the Southern Ocean this motion of the water is so well known to mariners who double Cape Horn in sailing from San Francisco to New York, that they now run considerably lower down in order to ride this tide eastward, ihan they did in former times. Here then we have one fact of water tide more comprehensive, at least than the tractive theory of the moon. We have also the fact of two great promontories in Capes Horn and Good Hope where this great tidal wave must strike against, and they produce constant oscillations of the water to and fro, and produce gurgitation and regurpitation in all the gulfs and rivers that line the coasts of the Northern, or more properly the Land Hemisphere. These gurgitations swell the wate highest in the placss where the seas lecome the narmate
as the more northern latitudes. In addition to theso dail oscillations of the watcr, there are constant eddy currents, denominated " Gulf Streams," all agreeing in their course and motion to this theory of the ocean tides.
When our present received tide theory of moon attraction was first laid down, the fact of the water of the great South ern ocean roling round faster than the solid parts of ou planets was not known. . Smaith, in his Physical Geography ays, "The tidal wave fows from east to west, owing to tho earth's daily rotation in a contrary direction." Here he is unintentionally correct, because the water striking these pro montories of the two great capes, is hurled back, and not, a e assumes, that the great ocean wove is moving from east to west. The United States government sailing charts lay down the fact of this great ocean wave moving from west to own the fact of the great cific so the or he sea at the rate of over twenty knots per hour, by follow ing the routes laid down in Maurg's charts
The old philosophy of the crystalline spheres was not more at variance with the correct motion of the stars and planets, than the moon theory of the tides. In their dilemma to ac count for the retrograde motions of the planete, they denomi nated them wanderers, straggiers, because they would not march with the "music of the spheres." In the moon theory of the tides the lunar satellite is made to pull and push a one and the same time, which is entirely at vatiance with the philosophy of force.
There is nothing in the heavens, nor in the earth, that proves to us positively that the sun holds the planets, an the planets their satellites, by attraction, as we are taugh that the moon attracts the water of our world. We see that all terrestrial bodies tend toward the center of the earth, and we call this gravitation; but we cannot see how a body moves around the earth without falling on it, by this law We say in dynamic philosophy, that bodies move in the di rection of least resistance, and that we can positively under stand ; but what force per se is, we do not know. It is alway better for us to explain phenomena by positive known laws and motions, than by any that rest merely upon conjecture Lancaster, Pa.

Jno. Wise.

The Great Hioosac Tunnel

Messrs. Editors :-In No. 23, Vol. XVII., of your paper, is an article upon the Hoosac Tunnel, jut made up from data nearly a year old, and consequently not correctly represent ing the tunnel as it is at the present time. Your conclusions of course were based upon the same data; but during the past year, and especially during the past five months, much greater progress has been made than ever before upon the work, and a knowledge of what has been done since the last report was issued will, I think, give you a different impres sion of the time required for its final completion
Referring to the profile in that number of the Scien Ific American, the following are the distances to the vari ous points where the worls is being prosecuted

The instrument pier is 4 feet west of the present west end of the tunnml The following are the lengths of the headings at the vari us points of the work, Dec. 2, 1867.

or 3,396 miles of heading yet to ve made, of which $1,218.975$ feet are between the west end and the west shaft, and $16,714.366$ feet between the west shaft and east end of the tunnel.

The central shaft is down 583 feet, and well No. 4 is down 150 feet.
The progress for the month of November, 1867, was as follows:

Enst end heading.......... W.est shaft, east West headinq heaing
 West end.,

Thirty feet of brick arch wera 184.00 " Thirty feet of brick arch wera completed during the
month at the west end, making a total of 510 feet of brick arch completed to date.
The progress for the last sir monthe has been as follow:s

West on
Total, from Juan 1, to Dec. $2 .$.

" year coding De 2,.

The new shaft has been sunk, and at its foot are the pumps which, together with those at tho west shaft, are now throw ing out between 900 and 1,000 gallons of water per minute.
During the last month great quantities of water were struck at both headings of the west shaft (70 gallons pe minute at the east heading in one day), and the work was stopped in consequence, which accounts for the small progress at this point. A new pump of 1,000 gallows per minute capacity will be at work, in addition to the above. in a few days, and the work can then go forward with increased ra pidity.
Well No. 4 is an artesian well, which is now being carried down as a shatt to afford two mure faces to work from. Its depth will be, when finished, 215 feet, its dimensions 8 by 8 feet.
At the rate of progress for the past gear it will require but
and at the rate for the past six months it will require but six had not been opened for a long period. A man preceded th years and five months. But when the central shaft and wel No. 4 are sunk to grade the number of faces to work from will be doubled, and the time of completion thereby greatiy diminished. At present drilling machines are employed only at the east end, but in a few weeks they will be used at th west shaft, and also at the central shaft as soon as the build ings and machinery are again in place, and this again will hasten the completion of the work. At the west shaft build ings are already erected for the manufacture of nitro.glyce rin, and the use of this powerful explosive will be adopte during the present month. In fine, every means that wil hasten the work will be employed, and ere the present gen ration passes away, and even within from four to seven years, trains loaded with freights and passengers will pas and repass through the great heart of the Hoosac Mountai as an hourly occurrence.
A. Beardslify, C. E , Asst. Engineer.

North Adams, Mass.

Horse-hair Snakes.-Wonderful Transformation.
Messrs. Editors:-In No. 21, current volume, you referred H. K., of Wis., who had described the horse-hair snake, to page 280 , No. 18 current volume, for a reply, which you con sidered "sufficient." With your kind permission I would like to speak a few words about the "snakes" in question When I resided in Pennsylvania, I, in company with many other lads, used to tie a bundle of horse hairs into a hard kno and then immerse them in the brook, when the water began to get warm, and in due time we would have just as many animals, with the power of locomotion and appearance o snakes, as there were hairs in the bundle. I have raised them one-eighth of an inch in diameter, with perceptible yes and mouth on the butt end or root part of the hair Take such a snake and dip it in an alkaline solution. and the fiesh or mucus that formed about the hair will dissolve, and the veritable horse hair is left. They will not generate in limestone water, only in freestone or salt water.
Covington, Ky.
T. w. B.

Man Proposes, but God Dlsposes.

It may not be generally known that but for one of those accidents which seem to be almost a direct interposition o Providence, Prof. Morse, the originator of the magnetic tele graph, might have been now an artist instead of the invento of the telegraph, and that agent of civilization we either un known or just discovered. We publish from Tuckerman Book of the Artists" just from the press of G
"A striking evidence of rence of Prof. Morsc
orded by the experience of this artist, if we pestiny is a orded by the experience of this artist, if we pass at onc from this early and hopeful moment to a more recent inci dent. He then aimed at renown through devotion to the beautiful; but it would seem as if the genius of his country n spite of himself, led him to this object, by the less flowery path of utility. He desired to identify his name with art but it has become far more widely associated with science A series of bitter disappzintments obliged him to "coin his mind for bread", for a long period, of exclusive attention to portrait painting, although, at rare intervals,he accomplished something more sati?factory. More than thirty years since on a voyage from Europe, in a conversation with his fellow paseengers, the theme of discourse happened to be the electro magnet; and one gentleman present related some exper ments $h 3$ had lately witneesed at Paris, which proved the almost incalculable rapidity of movement with which elec ricity was disseminated. The idea suggested itself to the active mind of the artist, that this wonderful and but partially explored agent might be rendered subservient ta that system intercommunication which had become so imporant principle of modern civilization. He brooded over the subject
as he walked the deck, or lay wakeful in his berth, and by as he walked the deck, or lay wakeful in his berth, and by
the time he arrived at New York, had so far matured his in the time he arrived at New York, had so far matured his in
vention as to have decided upon a telegraph of signs, which is essentially that now in use. After having sufficiently demonstrated his diecovery to the scientitic, a long period o toil, anxiety, and suspense intervened before he obtained the requisite facilities for the establishment of the magnetic tel egraph. It is now in daily operation in the United States and its superiority over all similar inventions abroad was confirmed by the testimony of Arago and the appropriation made for its erection by the French Government.

By one of those coincidences which would be thought ap propriate for romance, but which are more common, in fact than the unobservant are disposed to confess, these two most brilliant events in the painter's life-his first successful work of art and the triumph of his scientific discovery-wer brought together, as it were, in a manner singularly fitted to impress the imagination. Six copies of his "Dying Her cules" had been made in London, and the mold was then destroyed. Four of these were distributed by the artist t academies, one he retained, and the last was given to Mr^{2} Bulfinch, the architect of the Capitol-who was engaged a the time upon that building. After the lapse of many years an accident ruined Morse's own copy, and a similar fate ha vertaken the othere, at least in America. After vain en eavors to regain one of these trophies of his youthfu areer, he at length despaired of reeing again what could not fail to be endeared to his memory by the most interest ing associations- One day he was superintending the prep rations for the first establishment of his telegraph in th oom assigned at the Capitol. His perseverence and self denying labor had at length met its just reward, and he was taking the first active step to obtain a substantial benefi from his invention. It became necessary in locating the pires, to degcend into ar vault Eenasath the apartmont, which
had not been opened for a long period. A man preceded th
rtist with a lamp. As they passed along the subterranean chamber the latter's attention was excited by something white glimmering through the darkness. In approaching the object, what was his surprise to find himself guzing upon is long-lost Hercules, which he had not seen for twent ears. A little refiection explained the apparent miracle This was undoubtedly the copy given to his deceased friend he architect, and temporarily deposited in the vault fo safety, and undiscovered after his death.

Extraordinary Efieets of an EarthquakemeAn Ame rican Man-of- WVar Car rican Man-of-tVar Carsied Over the Tojss or [Offioial Report.]

SIR:-I have to state, with deep regret, that the Unite States steamship Monongulela, under my command, is now ling on the beach in front of the town of Frederickstadt, St roix, where she was thrown by the most fearful earthquak ever known here. The shock occurred at 3 oclock, P. M., he 18th inst. Up to that moment the weather was serene nd no indication of a change showed by the barometer wich stood at 30 degrees 15 minutes. The first indicatio ehad of the earthquake was a violent trembling of the hip, resembling the blowing off of steam. This lasted some 0 seconds, and immediately afterward the water was ob served to be receding rapidly from the beach. In a moment the current was changed, and bore the ship toward the beach carrying out the entire cable and drawing the bolts from the kelson, without the slightest effect in checking her terrific seed toward the beach. Another anchor was ordered to be let go, but in a few seconds she was in too shoal water for his to avail. When within a few yards of the beach, the refiux of the water checked her speed for a moment, and ight breeze from the land gave me a momentary hope tha he jib and foretopmost staysail might pay her head off shore so that in the reflux of the wave she might reach water sufficiently deep to float her, and then be brought up by the ther anchor. These sails were immediately set, and sh payed off so as to bring her broadside to the beach. Whe the sea returned, in the form of a wall of watcr 25 or 30 fee higb, it carried us over the warenouses into the first street of
the town. This wave in receding took her back toward the the town. This wavo in receding took her back toward the
beach, and left her naarly perpendicular on the edge of a coral reef, where she has now heeled over to an angle of 15 degrees.
All this was the work of a few moments only, and soon after the waters of the bay subsided into their naturally tran quil state, leaving us high and dry upon the beach. During her progress toward the beach she struck heavily two or three times; the first lurch carried the rifle guu on the fore castle overboard. Had the ship been carried 10 or 15 fee urther out shemust inevitably have been forced over on he eam ends, resulting, I fear, in her total destruction, and in the loss of many lives. Providentially only four men were these were in the boats at the timo the shock com penced. The boats that were down were all swamped es ept my gig, which was crushed under the keel, killing my cosswain, a most valuable man. During this terrific scen he officers and men behaved with coolness and subordina tion. It affords me great pleasure to state, that, after a care ful examination of the position and condition of the ship, I am nabled to report that she has sustained no irreparable dam ge to her hull. The sternpost is bent, and some 20 feet o her keel partially gone; propeller and shaft uninjured. Tbe ower pintle of the rudder is gone, but no other aamage is surtained by it. No damage is done to her hull more seriou han the loss of several sheets of copper, torn from her sta board bilge and from her keel.
She now lies on the edge of a coral reef, which forms a solid foundation, on which ways may be laid. She can thu e launched in 10 feet of water at 100 feet from the beach Gentlemen looking at the fhip from shore declare that the bottom of the bay was visible where there was before, and is To extricate the ship from her position I respectfuily gug gest that Mr. I. Hanscom be sent down with suitable materia or ways, ready for lajing down, and india-rubber camels to buoy her up. I think there is no insuperable obstacle to her being put afioat, providing a gang of ten or twelve good hip carpenters be sent down with the Naval Constructor, a vorlers and engines appear to bave sustained wo ill h tores and equipments.
S. B. Bissell, Commodore Commanding.

Rear-Admiral J. S. Palmer, commanding H. A. Squadron St. Thomas.

THe survey of another transcontinental railway route which shall follow mainly the 35th parallel of latitude, i early completed. Its projectors claim this as the mist feasible one across the continent and even if the northern and outhern roads are constructed, this would still be the favorit popular thoroughfare, and the easiest and cheapest built

The Chman Gun now being built at Pittsburgh, is $22 \frac{1}{4}$ feet in length, being two feet longer than the famous Rodman gun at Fort Hamilton, this harbor, but of exactly the same ore, twenty inches. Its greatest diameter is 5 feet 4 inches its least diameter, 2 feet 9 inches. The gun is desirned for garrison or naval service.
From lack of economy, in reduction of ores, it is estimated hat the aggregate loss on the produotion of bullion in this country for the present year will reach the sum of $\$ 20,000$. 000,

Recat gamerican and foreign catrots

Wardrobe.-Nathan Turner, WesíLynn, Mass.-This invention consists in a movable or swinging arr angement of the sides and top and bott om, where-
by they are folioed upon each other, with grooves or strips in or upon the des to support shelves when used as a closet or may be removed when used as a wardrobe.
Axle Box.-Henry B. Pitner, La Porte. Ind.-This invention consists of a Anthimble or slieve provided on eaci end in the instae win ascrew chread, ron, insucha way that said metallic endswill not turn in the box, and so that the axle bears only upon the softer metal.
sphing Fonmer.-Groyze S. Long, Bridgeport, Conn.-This inventionco ists of a vibrating anvil or formes, upon which the steel to be worked is placed, said formor vibrating under a roller, saila roller beiny hollow, and
provided with holes or orifices thiough which water recoived in the shatt of provided with holes or orlices thi ough whiten
Door-Fabtuner.-Francis C. Levalley, Warrenville, N. Y.-The prese truction and arrangement of its parts, 13 sampe and most effective ecure, when fastened
Roofing.-Orville Manly, Garrettsville, Ohio.-This invention consists of nies saturate: 1 withraw coaltar, made in the sqmeway asordinary brick, aving all the edges develled, being thicker at one end, and laid upan the cot with the thicker end towards the eave3, and the spaces between th thes formed by the and clay.
ifllding Bedstead or Crib.-R. S. Titcomb, Gloversville, N. Y.-This in ention consists of the parts being attached to each other by plvots an nones, wher other
Cabt Metal Cases for Spring Balanozb,-John Cbatillon, New Yor ity. - This invention relates to a new manner of arranging the cast met ases forspring balances, so tuat they can be made less expensive and sim
per than they are now made, and consists in fitting the iron, to which the pper end of the spring is secored, directly tirough the noper head of th case, instead of u.dng an additionalhead in the case for ihat purpose.
Twerrs.-John B. Himberg, Frederick City, Md.-This invention reiates to new tweers, which is so arranged that the center part or ring can be easily aken out, whenever desired, but not aceidentany, by a hook or stirrer, an ay conduct a strong llast of air to the fire
Punoh.-C.D. Flesche, New York city.-This invention consists in arrangPa a panch in such a manner that it consists of two parts, which are firml
onnected together tor cutting the metal, while for bending the same nnected together tor cutting the metal, whine for bending rho samc, making both operations by one instrument, and avoiding the removal of the article from the cutting to the benaiug punch, which was heretof ore nece Rary.
RaxLi
sts in mand the Leander Polock, Matea wan,N.T.-Tuis Invention co and or a portion of the case. When the two pizces are connected, the bas of one rests upon the rase of the other, the line of division batween the two bases being inclined so that as the rail presses upon the upper base, it will and to force the same
Fire Ladder.-Johan Blomgren, Galesburg, ill.-The main feature in this nvenion is a telescopic tale, ex
Harvester.-Trrancis C. Coppage, Terre Haute, Ind.-The object of m invention isto render more simple and effective tie machinery for operatio and austing the cutter bar and the reel of harvesters.
boat-Detaching apparates.-David L. Cohen, Peneacola, Fla.-The ob ect of this invention is to farnish a devics by which a ship's boat can be or launched at sea, without danger of capssizing or foulizg Drvioe for Hitohing horses.--Samuel Galbralth, New Orleans, La,in halters used in
hung, or injured
Hydrostatio Maghing.-Dr. J. R. Cole,KentonStation, Tenn.-The ob
 notive power for machinery or tor other purposes.
Fenoe Post.-Robert Rnmsay, New Wilmington, Pa.-In this invention the bottom of the post is supported between two parallel sills a short dis nce from the grou 1 , the post being dovetailed and held by keys passing ing the keys larger or smaller, or or different sizes
Self-Loading Exoavator.-Benj. Slusser, Sidney, ohio.-In this inven年 a pinion, attached to the forward ayle is made to clevate the dlow, whe hat convers the dirt from the plow to the cart a new method of insiantly nloading the cart, and setting it agam to receive anothe: load, is shown.

Washing Machine.-J. Q. Lellingwell, Nevada, Iowa.-This inventio milates to an improvement in washing machines, and consists of a viliratio Scaffotd for Builders, etc.-Jolin E. Bliss, Oxford, Ind.-Chis inveition asfor its object to turnish andmproved scaifold for the use of carpenter asons, painters, etc., which slaal be simple deasils adjusted to any desired hight.
Plow.-Harvey Briggs, Smithland, Ky.- Klis invention has for the object ofurnish an improved plow for breaking up sod or prairie land, whe
Corn Plow.-John Snyder, williamsfield, ohio.-This invention has for oject to furnish an improved plow ror plowing and hoeing corn.
hall be eimple and strong in construction and will do ito wortwell.
Self.ratina Attaobment for Reapres,-James h. Glassa nd Albert J rover rs, in the place of a reel, and are made to descend occasionally to swee the bundle from the platform, so that the third, fourth, sixth, or any othe desired rake may sweep the patiorm and delvo the bandle
SII Rooket.-John W. Hadueld, Newtown, N. T.-This invention relate a moctification of an improvemsnt in sky rocsets for which letters paten eregrane of the rocket, wherehy the uje of the ordinary guide stick was rendered un necessary and the rockets rendered capable of being packed for transport ion much more compactly than when provided with sticks. The presen invention also cousists in a novel manner of attaching the wings to the bod or "carcass" of the rocket, wa reb
crto, at a less cost of manulacture.
Tailpieos for Violins.- James Thoms, South Boston, Mass.-This inven tail p ece of a violin, wheroby a comparatively small portion of saitu string is asted in case ot breakage.
Hame Tvg-James E. Covert, Townsendville, N. Y.-This hamz tug, ac cording to the present invention, is made of a strip of mallesble fron or other
aitable material, perforated or providedwith ∇.shaped holesor slots havin center tongue plece, for the reception of a ∇-shaped blocts fixed at one end of the trace, by means of which block the trace is engaged with the hame end of the tongue to the said \mathbf{V}.slots, the bloas is helf frmily in place. an eonsequently the trane fastened to the hame tag

