Corxespmatute

$\xrightarrow{\text { ne Entuors art }}$

A Wonderful Turbine

Messrs. Editors :-On page 258, No.17, current volume of Scientific American, you publish a communication from F. Wilber, on "Turbines and Water Power," who asks your opinion, or that of some of your readers, as to the possibility of a six inch turbine doing more work than two twenty feet vershots, as stated by parties using a "Leffel Turbine," in an advertisement to which he refers; in reply. allow me to ay that the power of a turbine does not depend nccessari! upon the diameter, but upon the quantity of water which it discharges, and which is commonly denominated "square nches of discharge," and which means the quantity of water which will flow through an opening of the given area, unde he given head, without "contraction."
It is stated that one set of cards, one jack of one hundred and eighty-four spindles, two looms, etc., are driven by Leffel turbine, under forty feet head, with three-fourths of square inch of water. Now a vein of water of three-fourths of a square inch cross section, discharging under forty feet head will give theoretically $12-10$ horse power. The best turbine sually develop about eighty per cent of the theoretical usually develop about eighty per cent. of the theoretical powers of a given quantity of water. Eighty per cent. of 2-10 horse power gives $96-100$ horse power to do the amount of work stated, but which actually requires not less than fou horse power. It is also stated that this wheel does double the amount of work that could be done with two twenty feet overshots, which were as good as were ever built ; consequent ly they must have given seventy-five per cent. Therefore this turbine must have developed one hundred and fifty per cent f the power expended. Again, eighty-four gallons of wate per minute are stated by the parties to be furnished by thei stream. A gallon of water weighs $8 \frac{3.39}{100}$ pounds, from whic we have $84 \times 8 \frac{338}{\frac{3}{1000}} \times 40 \mathrm{ft}$. head 848 H. P. theoretical ef 33,000

1000
fect, 80 per cent of $\frac{8,48}{T i 000}$ H. P. is $\frac{678}{1000}$ H. P. to do the work stated. These, Messrs. Editors, a the facts of the case from which your correspondent and the rublic will see that this wheel, according to figures which "ca not lie," is developing from one-and-a-half times to more than three times the amount of power there is in the water itself. A most remarkable achievement and worthy the attention of all desiring grea economy of water!
Carmel, N. Y.

Prevention of the Musketo Pest

Messrs. Editors :-In a recent number of the Scientific American I noticed an article entitled "The Musketo Pest." with an invitation for suggestions of means of defense agains these insects. "Persian Insect Powder" and Carbolic Aci are mentioned as remedies, but in either of these cases man would consider the remedy worse than the disease. The only remedy is the exclusion of the musketo from the dwelling This is attempted by a fine netting stretched over the win dows and doors. These are of various fabrics, cotton being the material chiefly employed. But the fibers of cotton, even if sized or starched, will spread themselves across the inter stices of the netting and prevent the cooling currents of ai from entering; and they are easily torn, when they become valueless for the purpose intended. I have tried the various kinds of musketo netting, and find that the only prope material is wire cloth. It not only excludes all insects, but the material being smooth, permits the air to pass freely be tween the meshes. They can be made plain, or so woven a to present agreeable patterns and pictures to the eye. Such screens should be kept in stock by upholsterers.
Clinton, Mass
G. F. W.

Occult Properties of Numbers.

Messrs. Editors:-Permit me to add to the examples o extraordinary coincidences" mentioned in the current vol ume of your valuable journal first on page 227, and after ward continued by Mr. Konvalinka on page 259
As a professed believer in the occult properties of number first expounded by Pythagoras, the number 27,648 has been the object of some study by me. In the first place it is ex actly equal to the series $1^{1} \times 2^{2} \times 3^{3} \times 4^{4}$ and as I believe "tha such a remarkable coincidence can not be merely accidental it must have some deeper foundation in the mysteries of as tronomy," such, for example, as the number in which the vast cycle of the precession of the equinoxes is completed. It is true that astronomers do not make the years exactly those I have given, although very nearly identical ; so nearly, in fact, that we may well suppose the difference to be due either to imperfection in apparatus or to some " personal equation" or other in observation, for you will notice that the first two digits (27) is a cube $\left(=3^{3}\right)$ and the last digit (8) is also a cube $\left(2^{3}\right)$ that the middle digit is twice the cube root of 27 and that the other digit (4) is twice the cube root of 8 and that finally the sum of all the digits is exactly equal to the two first (27) whose cube root is 3 and whose sum is 9 the squar first
of 3

If now the order of the digits is reversed it becomes 84,672 which contains the original number exactly ${ }_{1}^{4} 96$ times. Both terms of the fraction expressing the ratio are perfect squares which are contained a whole number of times in the reversed qnantity and their square roots ($\frac{7}{4}$) differ exactly by that constantly recurring number 3 , the terms ($49-16$) differ by 33 Again the 84,672 is divisible without a remainder by the squares of all the digits except 5 and 9 , that is, by $1^{2} 2^{2} 3^{2} 4^{2}$ $6^{2} 7^{2} 8^{2}$ and also by the cubes of 123 and 4 . The sum of al the digits $8+4+6+7+2=27$ the cube of 3 the first two digits
(84) minus the last two (72) is exactly twice the middle digit (6) the exact difference of the first (8) and last (2).

The sum and the difference of 84,672 and 27,648 are 112,320 and 57,024 which can be shown to possess remarkable prop erties but I forbear to speak of them as well as of several properties of the other numbers having made this communi ation as long as I dared.

Wm. G. Leonard.
Cincinnati, Ohio.

Diagram of the Day Line

Messrs. Editors:-In the Scientific American (Vol XVII., No. 16, page 246) you say that a Mr. Lyman Thayer, of Burlington, Vt., has invented an admirable device for illus rating the day line, etc, and also for telling the relativ time of any two points on the earth's surface. Now I have not seen Mr. Thayer's diagram, but the one herein inclose completed a month ago) I suppose to be very similar. It however, is by no means exact, but is only intended to give nidea of the invention. I have taken for the day line the 180th meridian from Greenwich. It can reackily be seen that similar diagram can be made of the southern hemisphere and also that the device can be applied to all maps, to tel

the difference of time between any two points represented on he map. I should have written sooner on this matter, but was waiting until I could finish a large and accurate dia gram tu send you.
If the 180 th meridian be taken as 12 o'clock, $15^{\circ} \mathrm{E}$., or the 165th meridian W., represents 1 o'clock, and 15° W., or th 165th meridian E., represents 11 o'clock, etc. According to this I propose to number each meridian, allowing of course 4 minutes to the degree. Any meridian may be taken as 10 clock, but this alters all the others.
W. R. Shelmire. Philadelphia, Pa.

LENHART'S SPRING FISH-HOOK

The engraving accompanying this description represents device for contravening the proveroial want of success of fishermen. It is a double hook, one, A, being the bait hook, and the other, B, the securing hook. Fig. 1 shows the hook

ready for use and a fish about to take the bait, and Fig. 2 he hook sprung and the intended result. It is a combination of two hooks, connected in a light frame, the smaller or bait hook being pivoted to the bar, C, at its lower end, and the arger or securing hook attached to the spiral spring, D. By pulling down the large hook the slide, E , is engaged with the hook, A, which has a catch on its back and a light spring to throw the catch in place. A slight pull on the small hook or such a disturbance as may be made by a "nibble," mus disengage it from its catch and allow the spring, D, to act when the fish is held by the larger hook, as seen in Fig. 2 . o disengage the fish and to bait the hook anew, the large ook is pulled down by one hand, while the other holds th top of the bar. It appears to be cruel to the fish-a consid
ration which probably has little force with anglers-but nless carefully used may also be dangerous to the fisherman A patent for this device is now pending through the Scientific American Patent Agency. All communications should be ad dressed to the inventor, A. I. Lenhart, New Brunswick, N. J

Innerfection of Malleable Iron.

It has for some time past been known, that the fibrous na ture of iron, long considered an element of its strength, is in reality, due to the presence of foreign matters, which are aken up during manufacture, and prevent the adhesion of he adjacent particles of the iron, however carefully or pow erfully the metal may be compressed, or however it may be twisted, doubled up, or contorted. The effect is similar to hat which occurs with a glass tube hermetically sealed a both ends ; however it may be drawn out, however often it may be doubled or twisted together, at even a very high emperature, the air, a foreign substance within it, will pre vent the union of its particles, and cause it to have a fibrou appearance, without adding to its strength, but the contrary The imperfection of malleable iron from this cause has now been found far greater than was suspected. It has been shown, by experiments made on French and English armor plates, that, however homogeneous they may seem when cut and polished, whether formed by the rollers or the hammer they consist of laminæ not at all welded together, and pre senting an appearance similar to that of a number of sheet of paper. This condition has been revealed unmistakably by the effects produced by projectiles; and it is found to be pre sent even when the plate has been both hammered and rolled at a welding temperature
This discovery assumes a still more serious character, if possible, when there is question of such forgings as railway possible, when there is question of such forgings as railway
axles, screw shafts, the shafts of marine engines, and other portions of machinery, the soundness of which is of vital im portance. It explains the difficulty of constructing larg forgings of requisite strength; and leads, unfortunately, to the conclusion, that without fusion, as in the case of steel there can be no adequate security with regard to the homogeneity, and therefore the strength of the material.
The intense heat employed in the manufacture softens th scoriaceous matters, but they are never expelled. This is rue, to a greater or less extent, even with charcoal iron The only advantage possessed by the charcoal iron, in this respect, seems to be that the laminæ do not separate during fracture under the blow of a projectile, which is a most try ing test of the amount of their adhesion.
It is worthy of notice that the laminæ are more distinctly perceptible, the better the iron, and the more capable of re sisting fusion at high temperatures. Fusion seems to be an ndispensable condition for the prevention of a laminated tructure; hence the excellence of metal such as steel, whic is subjected to fusion during manufacture. When fusion ha taken place, the rolls and the hammer impart new and valu able qualities. The so-called fibrous character of iron cause its practical to be far less than its theoretical power of resist ance; and when it begins to give way in theshafts of marin engines, etc., the fracture commences along lines of junction of the laminæ ; and the results of numerous experiment seem to show that, while the welding is very imperfectin hose portions to which the shock of the hammer cannot reach, it is in all more or less faulty.-The Scientific Reviev.

Singular Fact.--The Effect of variable Calibers in
It is known to engineers that some practitioners believe hat running a pipe from the steam space to the water space outside the boiler, and attaching their gages thereto, wil give them notice of foaming, or priming, and assist in the prevention of these annoyances. We have a letter from Maine correspondent who says, that on the Portland and Kennebec railroad is a freight engine which has a "foam pipe," tapped into the top of the boiler, running down, and apped into the leg-water space of the fire box, just above th foot board ; which leaves the pipe about three feet long. Into this pipe a water gage is fitted. When the steam is on and the throttle opened, the water in the boiler rises a little, of course; but in the gage it falls at the same time nearly two nches. Still, when the gage wasclosed the glass would show inches. Still, when the g
the two inches of water.
This case, if we can understand it from the letter of ou
This cher correspondent, is a curious one, but not singular. We hav seen but one case similar, but have heard of one other. In both these cases the holes tapped in the steam space and in the water space were at first of varying diameter; that in the steam space being much smaller than that in the wate space. In the one case, where the upper hole was half.inch and the lower three-fourths, we failed to get a reliable wate level on the gage. In the other case the experimentor finally got a reliable gage by making both holes of the same caliber The "reason why" we confess we do not understand. We he "reason why" we confess we do not understand. We investigated more fully than we did.

The November Meteors.-Just one year ago the public mind was much exercised at an expected display of celestia yrotechnics which astronomers predicted would be of unu sual brilliancy. Disappointed on that occasion, it is hardly t e expected that the same enthusiasm will be exhibited thi rear, although it is possible that the shower may make it ppearance. In the year 1832, the inhabitants of Europe were avored with a meteoric display, which on the succeeding ear delighted the American population. Last November the Europeans were again favored, and certain astronomers are onfident that a present monthwill witness a repetition 0 our side of the water

Improved Fence for Subunerged Lands
Throughout the country there are alluvial lands, which, while possessing a rich soil, are kept from yielding any benefit to the cultivator by the certain, or uncertain, contingency of an annual overflow. In many cases dyking is too expensive a process, and when an overflow or freshet occurs, fences, and even outhouses and barns are swept away by the flood. To protect fences, under such circumstances, from being carried away by the flood, is the object of the device illustrated in the engraving.
The permanent posts are quite low, as seen at A, and are firmly seated in the ground. The sections of fence are linked or hinged to these parts, and held in an upright position by means of a latch or catch, B, either of wood or metal, pivoted to the top of the post, and engaging with the mid-
dle upright of the section. dle upright of the section. The sections are secured one
to the other by means of wooden keys, or wedges, seen at C, which lock the line together and make a secure and rigid fence. The short nosts sustain the whole weight of the fence.
When the water rises, and there is danger of a destructive overflow, the keys may be driven out and the fence be allowed to fall flat once ground, the sertions being ground, the sertions being
prevented from being carried away by their connection with the posts. The prostration of the fence need not be effectéd until the water is half way up the hight of the fence, when the work can be done by means of a boat. It is evident that in some situations such a device would be invaluable.
It was patented through the Scient:fic American Patent Agency, Aug 20,1867 , by L. H. Bowlus, who may be addressed relative thereto at Knoxville, Tenn. The entire patent, \bullet State rights for sale.

Lapis Lazuli.

The name of this mineral is derived from the Persian lan guage, and means blue color, or, with the Latin prefix, biue stone. The ancients were well acquainted with it, and have employed it as a substitute for other gems. The Greeks and Romans are said to have called it by the name of sapphire, denominating that with specks of iron pyrites the sapphirus regilus; Pliny called it the cyanus. It was formally used as a strengthening medicine.
Lapis lazuli very seldom occurs crystallized; its regular form is the oblique four-sided prism; it mostly occurs compact, and in grains and spects, with an uneven and conchoidal fracture ; it is translucent on the edges ; its luster is nearly vitreous and shining ; structure foliated; its color is fine azure blue, with different shades, often interspersed with spots and veins of pyrites. It scratches glass, but is attacked by quartz and by the file; its specific gravity is $2 \cdot 3$; before the blowpipe and on charcoal it with difficulty runs into a
white glass, but with borax it fuses with effervescence into a white glass, but with borax it fuses with effervescence into a
limpid glass, It consists of lime, magnesia, and silex, with limpid glass, It consists of lime, magnesia,
soda, protoxide of iron, and sulphuric acid.
It is generally called in trade, the Armenian stone.
It is found in gangues of the older formations, and in Bu charia ; it exists in granite rocks, and is disseminated in all veins of thin capacity ; on the Baikal Lake it is found in solid pieces ; also, in Siberia, Thibet, China, Chili, and Great Bucharia. Lapis lazuli is much used for jewelry, such as rings,
pins, crosses, ear-rings, etc. The best pieces are generally cut out from larger lumps by means of copper saws and emery, then ground with emery on a lead wheel, and polished with rotten stone on a tin wheel. The rocks which yield lapis lazuli, where it is contained in specks, are likewise cut for ornamental purposes, such as snuff-boxes, vases, candlesticks, cups, columns, cane-heads, etc. ; also, for architectural ornaments and stone mosaic ; the larger specimens, having specks regu-
larly disseminated on a white ground of the rock, are those selected for cutting. The most important use of this miner al is that of furnishing the celebrated and beautiful pigment called ultramarine blue, used by painters in oil, and said nev er to fade. The lapis lazuli takes a very high polish, but becomes dull again after being used for some time. It is sometimes imitated by lazulite (azure stone), or blue carbonate of copper, which, however, is not near so hard, and effer vesces on testing with nitric acid. Those specimens having iron pyrites inclosed are difficult to polish well, on account of the unequal hardness of the two minerals.
Lapis lazuli has lately been discovered in Calitornia, but the color of the mineral from this locality is very indifferent and its price is therefore much inferior to that from Persia.
The value of lapis lazuli, although depending upon its purity, intensity of color, and size, has nevertheless much diminished when compared with its former prices.
The Chinese, who have for a long time employed lapsis lazuli in their porcelain painting, call the pure and sky-blue stone zuisang, and the dark blue, with disseminated iron pyrites, the tchingtchang, preferring the the latter to the former they work the same for many ornaments, such as vases, snuff
boses, buttons, and cups. In the palace which Catharine II boxes, buttons, and cups. In the palace which Catharine IL built for her favorite, Orlof, at st. Petersburg, there are
some apartments entirely lined with lapis lazuli, which forms most magnificent decoration.
The process of preparing ultramarinc was known as early as the fitteenth century. The zolor is now mostly prepared at Rome, in the following manner: those pieces which are free from pyrites specks, are first calcined and pulverized; the powder is then formed into a mass with a resinous ce ment (pastello), and fused at a strong heat; this is then worked with the hands in soft water, whereby the finest col oring particles are disengaged in the water, which will soon
be impregnated with the blue color; a fresh portion of waimpregnated with the blue color; a fresh portion of wa

BOWLUS' LAY-DOWN FENCE.

ter then taken, and the same operation is continued until the remains are colorless. The ultramarine, after a short time settes to the bottom of the vessels and is carefully separated and dried. If the lapis lazuli be of the best quality, the pro duct will be from two to three per cent. That color which emains yet in the mass is of an inferior quality, and is called the ultramarine ashes; it is of a paler and more red dish color.
Good ultramarine has a silky touch, and its specific gravity is $2: 36$. It does not lose its color if exposed to heat, but is soon discolored by acids, and forms a jelly. In order to distinguish the pure ultramarine from numerous spurious and adulterating coloring materials, such as indigo, Prussian blue, gineral blue. etc., it is only necessary to test the article in ultramarine is discolored, yielding a clear solution and a white residuum. The real ultramarine has always been at a ery high price, on account of the small product obtained rom the mineral. An ounce of the purest ultramarine is
sold in France for two hundred to two hundred and fifty rancs, which is not within the reach of all painters.
In the year 1828, the discovery was made by Profess.r. Gmelin, in Tubingen, that sulphuret of soda was the proper material for imitating this precious and valuable pigment By his experiments he succeeded in preparing this substance from silex, alumina, soda, and sulphur, producing a color in every respect corresponding with the true color of the lapis lazuli, and bearing the same relation to acids as the genuine Itramarine. This, for economy, has become a great objec painters and color men, since a whole pound of it may be prchased in France for twenty francs. As it bids fair to meet with a great consumption, being even substituted for cobalt in bluing paper, thread, and other stuffs, several manufacturers have already been induced to engage largely in its preparation; and there is now a very extensive establishment
in full operation by M. Guimet, three leagues from Lyons, ho likewise claims the priority of its discovery : the roya porcelain manufactory at Meissen, in Sazony, also prepares it. The process for making the artificial ultramarine, as it was first described by Gmelin, is here given, as it was published in the Annales de Chimie. The whole process is divid d into three parts :

1. The pare hydrate of silica is prepared by fusing fine pulverized quartz or pure sand with four times its own weight of salt of tartar, dissoling the fused mass in water and precipitating by muriatic acid; also the hydrate of alumina is prepared from alum in solution, precipitated by ammonia.
2. Dissolve the silex so obtained in a hot solution of caus tic soda, and add to seventy parts of the pure silex seventytwo parts of alumina ; then evaporate these substances until a moist powder remains.
3. In a covered Hessian crucible, a mixture of dried sal so da, one part to two parts of sulphur, is heated gradually, until it is fully fused, and to the fused mass add small quantities of the earthy precipitate, taking care not to throw in fresh quantities until all the vapors have ceased; after stand-
ing for an hour in the fire, remove the crucible, and allow it to cool. It now contains the oltramarine, mixed with an ex cess of sulphuret, which is to be removed by levigation; and If the sulphuret is still in excess, it is to be expelled by moderate heat. Should the color not be uniform, levigation is the only remedy.-Feucithoanger.

§riemte familiarly edurtrateci.

This animal has had a reputation from the earliest periods of medical science. Even from the time of Homer, the appellation of leech was given to the practitioners of the art of surhe word signifyng of the languages of German derivaion to the leech. From an English exchange we gather the following facts relative to the life and habits of this species of quatic worm, which is indeed among the lowest classes of the animal chain of being :-
"There are about thirteen or fourteen species of the leech, some of which are found in most parts of the world; but the medicinal species is lest known, and abounds in various parts of the world-as America, Russia, Huagary, Spain, Portugal, in the marshy plains of Egypt, and in various parts of Asia It belongs to the class annelides, or ringed worms, its body being composed of a series of rings, or circular muscles, by the successive contraction of which it moves along either in the water or upon the surface of leaves, reeds, or other solid bodies. The tail extremity is in the form of a cup, or sucker, by which it adheres firmly to flat substances, on the same principle as a boy's leather sucker adheres to and lifts up a stone. The mouth is also in the form of a sucker, and is, moreover, furnished with three cartillaginous teeth, placed so as to form with each other a triangle. When examined and felt with the point of a finger, they seem soft and blunt; but felt with the point of a finger, they seem soft and blunt ; but
the animal, when about to pierce the skin, seenss to have the power of erecting them into firm, sharp-edged lancets, which saw through the integuments in a single instant, and almos without inficting any pain. Having made the puncture, the blood is extracted by a process of suction, and is passed through the osphagus into the stomach, or rather stomachs, of the animal, which consist of a series of communicating cells, that occupy the greater part of the interior of its body The leech having thus gorged itself to the utmost, if undis turbed, remains in a half-torpid condition till it has digested its gory meal, and not unfrequently dies of the surfeit. If it survives it will be greatly increased in size. They can live for months and years on what appears to be pure water a lone This forms the singular circumstance in the diet of these ani. mals. They delight to gorge themselves with a full meal of blood, even to surfeit; and yet with piain water they live row, and seem to have the greatest enjoyment of existence It would appear as if their three lance-formed teeth, and thei carniverous appetites, were bestowed wore for the benefit of man than for themselves, and that, in their system of dietet ics water is the rule and blood the exception.
The medicinal leech is a native of many parts of Britain, but is now becoming very rare. France is supplied chiefly from Strasburg, whence they are imported from Hungary, Turkey, Wallac'iia and Russia, and kept in ponds. They are carried into France on spring wagons, and are contained in moistened bags, each bag containing 120 leeches. Previous to 1834 upward of $46,000,000$ of leeches were imported into France annually. At present the numbers have decreased to $17,000,000$. They are impurted into London and Leith by seaz packed in little bags, which are occasionally moistened with water during the short voyage. In general they arrive fresh and healthy ; but they are not unfrequently liable to disease which destroys great numbers. There are three sorts, or sizes, the largest and middie sorts being reckoned the best. A large leech is calculated to abstract half an ounce of blood, besides the quantity which flows from the wound afterward The smaller sizes are comparatively inefficacious.
A common animal in the pools of this country is the horse leech. It nearly resembles the other, but is of a more uniform color, and not so decidedly marked with greenish streaks on the backs as the medicinal species. The horse leech has no great inclination to fasten on the human skin, but when it does so it takes its fill, just like the other, and no more. There is a popular but unfounded belief that if a leech of this description do fasten on the skin, it will continue to suck and discharge the blood till every drop in the body is ex hausted. Hence they are the dread of every school boy who hausted. Hence they are the dread of every school boy
happens to wade with naked legs into their dominions.
The leech, like many other animals, appears to have a very nice sensibility in regard to atmospheric changes, and especially what regards the electric modifications of the air. Beform storms, or any sudden change in the atmosphere, the leech is seen in great activity, and darting up to the surface of the water in its jar. These enimals, too, at certain times, are found to move out of the water, and remain for a considerable period clustered on the dry upper surface of the jar ; while on other occasions they will remain for days immersed in the water near the bottom. They produce small eggs, which form into cocoons, from which in due time the living young make their appearance.

Grindstone ϵ rit as a Substitute for Fire Brick.
Mr. Ludwig Wolf, who has charge of a number of the tempering furnaces in the ax factory at Coilinsville, Conn., says that "noticing the great amount of fire brick required to teep them in order, I thought of using grindstone grit-of which we have a large quantity-knowing the adhesive quality of the grit. I tried it, and found it to work well. It does not last so long as fire brick, but it keeps the fire cleaner than the brick, and does not form clinkers so iast. I do not know if it will work as well in fires where a heavy blast is required, but if it will it is cheap enough, as for other purposes it has littla value."
Silica is the principal ingredient of grindstone grit, to gether with oxide of iron. It would appear to be well adapt
ed for lining such furnaces as our correspondent manages.

