THE PERMEATION OF ORGANIC AND OTHER FLUIDS.
It is well know that at various stages of the functions of different organs there is a direct passage of liquor from one
portion to another of the organs. Thus, for example, from the stomach and bowels at certain periods there is a permea tion of liquor, consisting of the soft and dense fluid products of digestion, through the side of the intestinal canal, into the blood and lymph vessels, which ramify in the thickness of its walls. So too, also, there is during certain periods a transit of fluid from the blood vessels, ramifying through certain glands (for example, the salivary) into the ducts of the mouth. Phenomena of this character have been long mistakenly likened to those which were transacted between different fluids partitioned outside of the animal organisms. The whole two series together have been comprised as endosmosis and exosmosis.
If a glass vessel have a thin, upright partition of plaster of Paris through its center, and on the right hand side brine be placed, and on the left pure water be poured, until the divided fluids are at one level, a flow is immediately established through the partition, and the brine will soon rise, while the clear water will lower in exact proportion. This is endos mose. The mixture of the two fluids, if the partition were removed, would be easily understood as one of the simplest of mere physical phenomena, and the only action of the partition is to graduate the rate of the flow, and thus allow the phenomena to be observed.
This is strictly true with substances having such large pores as plaster ; but when an inanimate membrane is used the tissue of it seems to exert a more definite action. The change in volume of the side by side fluids depends on the difference of their properties. In mixable liquids this is de termined by their capacity for water, and acts the same be t ween solutions of different density of the same substance. as between different substances. Solutions in water, of gum, gelatin, etc., increase in volume when opposed to water.
Each kind ot matter has a tendency to diffuse itself through the pores or interstices of every other kind. And this tendency explains the solution of bodies. The various degrees in which this exists in different bodies accounts in part for many of the at first mysterious phenomena of physiology.
When a body is plunged into water it is either wetted or the reverse, according to its capacity for that fluid. If wetted, then its pores are saturated with moisture. This phenomenon is very simple, yet it is perfectly analogous to fundamental phenomena in the realm of physiology. This wetting is the irst result of adhesion, or the first intimation of chemical affinity. That it is a result of chemical or physical affinity is shown by the fact that different substances act with different power. Thus while water will readily flow into the pores of chalk, mercury will not enter there at all, but is rather re pelled. But while metals are really impervious to water mercury will interpenetrate them.
Solids indicate various degrees of penetrability for water Λ tube filled with glass, powdered very fine, will elevate
water 170 millimeters, when the lower extremity is immersed in that fluid, while a tube containing glass, coarsely pow dered, elevates it only 107 millimeters. This depends on the minuteness of the pores, by which a greater surface, and consequently a fuller action, is exhibited. It is evident that when the pores are large, the atoms of water occupying the entral portion, do not come in contact with so large an ex tent of surface, and hence are not influenced.
This surface action of the pores is well shown by the filtra tion of liquids. Salt water passing through a column of sand becomes fresh, but if the current be continued, it at length flows through unchanged; for after the surfaces of the san grains have attracted all the salt they can hold, they permit the remainder to pass unimpeted.
The exact reverse of this is obtained with some solutions as carbonate of soda; the sand having a stronger affinity for the water than for that substance, the fluid flows out mor concentrated than it enters.
The principle of the elevation of a fluid by a column of sand or powdered glass is the same as that of a capillary tube The minute spaces cr pores between the grains form 9 con tinuous, if tortuous tube, throughout their whole extent, up which the fluid is drawn. The hight to which it will ascend is limited by the size of the pores, as in a continuous Lollow tube. The fluid will not aggregate and flow from the surface, for the reason that they are thus drawn up and held by th attraction of the interior of the pore or tube.
The central portion is never so much elevated. The press ure of the atmosphere accelerates, but does not otherwise af fect the ultimate hight to which the column of fluid wil ascend. The effect is the same in vacuo; nor does the hy grometric state of the atmosphere vary the result.
Elevation of temperature increases the hight to which a fluid will ascend, and also the rapidity. Heat increases the energy of
When.
When a colored solution is dropped on a piece of chalk the water penetrates into the pores of the chalk, leaving the col oring matter on the surface; and this is not because the par If fluid mercury be dropped are too large to enter the chalk f fluid mercvry be dropped upon the chalk it will not be ab sorbed-it will not wet it ; in other words, there is no affinity between the atoms of chalk and mercury. The phenomena here are the same as in capillary attraction; unless the fluid is capable of wetting the tube it will not be affected. Porous bodies, like tubes, imbibe fluids for which their atoms have attractions, and repel those for which they have not.
If an end of an open glass tube of small size be placed in water, that fluid will rise to a considerable hight; but if the ube be placed in the mercury it will fail to enter, and will
be depressed below its external level. Not only are fluids and gases absorbed by porous bodies, but they are peculiarly affected in the act. When the pores are extremely minute they exert a decided condensing influence, especially on gases. Spongy platinum, placed in a jar of hydrogen and oxygen, becomes bedewed with water produced by liquefying of these gases, i, e., their union. Spongy platinum condenses 252 times its own volume of oxygen, and then has become a powerful oxidizing substance. Prepared charcoal exerts so strong an attraction that it completely removes the nitric oxides from solutions of lead, tartar emetic, ammoniated oxide of copper, chloride of tin and zinc. Charcoal will absord the coloring of almost all organic substances.
All bodies, even the densest minerals and metals, are permeable to fluids and gases. Water may be used as a partition between gases, and is found to be one of the most permeable of substances. The water of lake and river contains common air, but this air contains one fifth oxygen; that of the atmosphere contains about one third. It is from this richness of Sygen that aquatic organisms derive their support.
Solution is an imperfect form or stage of chemical affinity, which change of form occurs without change of properties. If water be added to an alcoholic solution of camphor, the latter is at once precipitated, for the alcohol has a greater affinity for the water than the camphor, and when a solution of salt in water is treated with alcohol, the salt at once crys tallizes at the bottom of the vessel, thus showing that both were held in solution by chemical affinity.
The line of distinction between capillary attraction and chemical affinity is indefinite. Hence Clairaut's formula, "if the attraction of the particles of a solid for tbose of a fluid is more than half the attraction of these last for each other, the solid will be wetted; but if it be less than half, the solid will not be wetted."
Capillary attraction is not only related to chemical affinity but also to attraction of cohesion. When two pieces of lead, on being pressed surface to surface, adhere; when two plates of glass become attached, or when a plate of glass adneres to the surface of water, one and the same principle is involved. But in the passage of animal fluids through membranous tissue, it must not be inferred that the latter exert no power On the contrary, they act on animal
ate, with the most varied results.
The processes of absorption, secretion, and excretion, while they are illustrated by the plysical processes we have described, to which they are strictly analogous, and while they moreover iuvolve physical laws, exhibit a character which precludes our considering them physical, and which distinctly distinguishesthem from, and elevates them above chemical roceedings.
Such is the listory of the phenomena of endosmosis. They are a series which are not physiological, but which are de pendent on physical laws and the physical properties and relations of sybstances. They bear no nearer relation to the phenomena of physiological transudation than the descending flight of a swallow or an albatross does to gravitation. Un doubtedly, both alike involve the existence of physical sub stances and properties, since, if the body of the bird had no weight, it could not descend ; and so also the liquids and se retions of the body could not permeate vessels unless th fuids had physical properties. But these properties are no what constitute the heart of the phenomena, nor can they be
alleged to explain them. The physical side of the phenomena alleged to explain them. The physical side of the phenomena
are made strictly subservient to other and higher processes are made strictly subservient to other and higher processes
than they are capable of. The essential conditions of absorption in animate organisms are a cell wall, whose composition is in great part water, and a fluid of animal substance. The products of digestion are animal substances in a flowing state, the composition of which, as food, was in large propor tion water. This will pass through cell walls, or their inter stices, not in virtue of the existence of defined passages or pores, but by displacing inwardly the particles of fluid al ready constituting a considerable part of the soft solid matter of the cell. Organic absorption commences and takes plac fow or progressive motion of the contents of the vessels that tend to draw into their own undisturbed current, soluble particles through extremely attenuate films of substance, in rposed between fluid and current. Such films are cel walls. This is demonstrated by the fact that the power of different organs for absorption, depends on the number of
vessels with which ther are supplied, and the rapidity of the low of their contents. This absorption, as in the case of the ncoming of the products of digestion or soluble portion of ood, is strictly organic, and is not to be induced under merel physical conditions; that is, where organic motions have come to an end, or where the tissues are exanimate. The readiness with which the fluid or watery portion of the con ents of the blood vessels will leave them and infiltrate the tissues when the organism is really exanimate, attests the sistence of condition during animation which held those tluids in their regular channel. The physiological refuses to be merged or swamped in the physical and chemical while making both the latter subservient and ancillary to its
own issues The more we study the phenomena of each de partment, the more complete and inflexible becomes our as surance that the two latter phenomena are not convertible with the physiological. In view of a proper estimation of the acts, the ordinary and uniformly accredited designation o the ingress of oxygen into the capillaries of the lungs, and henomen their carbonic acid into the air-vesicles, as truth.-Dental Cosmos.

Practice and persistence are the elements of the mechan-

metric systein.

In the year 806, in the first days of the month of May, near Aix-la-Chapelle, in the middie of a plain shaded by young poplars recently imported from Italy, numerous workmen were engaged in embellishing a magnificent tent of circula form, and being not less than one hundred and fifty cubits in diameter. Rich silken flags, representiog the different coun tries conquered by Charlemagne, were langing from each of the posts supporting the magnificent T'urkish carpets which formed this elegant structure

This tent was already filled with knights and deputies from all nations. Charles, on this occasion, intended to divide his empire among his three sons, Charles, Pepin, and Louis
When the Emporor had arrived, seated on his throne, sur rounded by his family and the principal officers of his ling dom, he rose, his aspect was imposing, his countenance thoughtful, open, but severe, recalling his Germau origin He then spoke, and his words were repeated by interpreters standing in the middle of the representatives of each nation After his speech, which was but an account, or rather a his tory of the first years of his reign, he caused his sons to b recognized as his successors, and having fnished what be had to say respecting the settlement of public affairs, he turned toward his secretary, Eginard, saying: "It is you turn, my friend; speak to the learned men who are here pres ent, and ask them for me if they have resolved the question I proposed to them last year."
This question was a very important and a very difficult on to solve. It was to find aa imperishable unit of length. Charlemagne had already remarked that the ancient slade and cubit had no exactness.
The idea of giving to the nations of the earth a common measure, capable of being transmitted with exactness to the most remote posterity, was truly worthy of his genius.

Then, after Eginard had asked an answer from the learned men, a long silence prevailed in the assembly, notwithstand ing the ryyal reward which the secretary had ready for the is tinguished man who should find this wonderful unit. It wa not timidity that kept those men silent, it was simply incapacity.
Understanding at last that this question was, if not insolu le, at least beyond the knowledge of his time, Charlemagne fter a moment of anger, stretched out his foot on the tabl before him, and ordered Eginard to measure it, which he did, ncluding the shoe of polished steel worn at that time. This length named the king's foot was correctly marked inside of ublic monuments.
Charlemagne wished also that after his death his body and his shoes should be kept with care in a leaden coffin. "I do
not think, said he, that after my death there will be a ma. not think, said he, that after my death there will be a ma; oo devoid of sense as to destroy or alter my mortal remains.
In fact, no living being ever touched this celebrated fcot, for even in 1793, when the French revolutionists in their fur acked all the royal tombs, the king's foot was yet an object of veneration for the infuriated mob, and the leaden coffin pas opened with great care. Alas! Time, not with his scythe, but with the help of his exterminating agents, the oxides had destroyed not only the shoes, but even the bones of the monarch, and all was reduced to dust.
After the division of the kingdom of Charlemagne, the dit ferent States remained separated, and little by little the mod ls of the king's foot have been lengthened by some and horten by others, so that the true foot is lost
If we take the English foot, or that of the United States, as a point of comparison, we fird that the French foot is long er, and that of Spain shorter, and, indeed, we have as many king's feet as we have kingdom's in Europe.
In 1791, that is, 985 years later, the learned men oï modern times thought of measuring the circumference of the eart in several countries. This difficult undertaking, the object o which was not only to ascertain the dimensions, but also the exact form of our globe was perfectly executed, and they too or unit of length the meter which is the ten-millionth part of the distance from the pole to the equator.
This meter, which can no more be lost than the earth which we inhabit, is equivalent in English feet to 0.3048 meter, and ciprocally a meter is equal to 3.28 feet, or 3 feet, 3 inches This meter determines the dimensions of the other unit hich have new denominations and of which here is the ta ble:

Are, unit of surface for land, is a sumere whose side is ten
Liter, unit of capacity for liquids, is a cube whose side is the tenth part of the meter.
Stere, unit of solidity for wood, is simply a cube meter. Gramme, unit of weight, imagine a small cube of wate whose side would be the hundredth part of a meter.
Franc, unit of money, is a piece composed of nine parts of pure silver
Thus all the units of weights and measures are derive rom the meter which is the standard of this system
To be able to form an ewact idea of tho absolute value of hese new measures, we will compare them with measure that are familiar, thus: : Meter, 3 feet, $3 \frac{1}{4}$ inches ; Kilogramme about 2 lbs., 3 oz.; Liter, about $1 \frac{1}{2}$ pint.
Let us firish this article by an experiment which may be useful. We will add that if to a pin, A, we guspend a smal ball, B, and that by shortening or lengthening the thread we succeed in making it oscillate sixty times in one minute, the the length of the thread from the pin to the center of the jal will be exactly 0.997 meter-very nearly one meter in the latiude of New York.
No. 4 F. Eleventh st., New York.
M. Vmronts

