from a wheelbarrow to a steam engine, and then to go into a first class shop and learn the niceties of the business.

ordnance at the exposition.

A tour through the Ordnance Department of the Great Ex posit:on furtishes the opportunity, though scarcely the material, for a comparison of the relative progress of the severa Christian nations in the science of destruction, as applied to
modern wartare. The display is a very unequal one. Eng land takes the lead in the comple'eness of her exhibition, and America follows after all her rules in this respect. The French, who make so impusing a display in other denart men is, were at first strangely behind here. In July, how
they brought out their larg'st and best guns, and fine speci mens of workmans:ip liey are, whatever they may be in other respects. Most of them are manuactured at Ruelle, on the l.ouvre, near Angoulême. This site for the Government manufactory was originally selected in 1776, on account of its not only affording good water power, but because of its prox imity to mines furnishing ores best adapted for the manufac ture of iron having that pcculiar quality of tenacity which is
so essential in the metal used for ordnance. The estensive so essential in the metal uspod for ordnance. The extensive
forests in the vicinity also furnish an ample supply of charforests in the vicinity also furnish an ample supply of clar-
coal. Thus most of the material used at Ruelle is obtaincd near, though some gray pig iron, of a peculiarly tenacious quality, has recently been imported from Alelich in Algeria. The ssstem adopted at Ruelle for securing the most perfect material for casting cannon, is worthy of notice. After test ing the pigs by breaking them, they are cast into a cannon, which is tested to the bursing point, the contractor paying the expenses of the trial if his ore is not accepted. The ore carefully removed. It is next exposed to the air, until the sulphur and magnesia contained in it are dissipated, after which the ores trom the different mines are carefullo mixed so that every c sting sladl contain a due proportion of each. core ssstem, and are all breech-loaders and reënforced. Their rifie guns are uniformly made with six grooves. All of their siege nd lattray guns are made of gun metal. This is less enduring, and not so good fur securing a perfect range as a harder material, but it has the merit of economy, as it can be cast over and over again. The bore of the French gun is
larger, in proporion to weight of metal, than the steel guns larger, in proporion to weight of metal, than the steel guns
exhibited by Krupp, Whitworth \& Armstrong. One French gun in the Esposition is 18 feet long, 16 inches bore, and wtighs $85,000 \mathrm{lbs}$. It throws a shot of about 700 lbs , with a charge of 100 lbs . This the first and only gun of ite size yet made in France. has only been fired twice with ordinary charges. In size it is excelled by a gun exhibited by Krupp, which weighs $112,000 \mathrm{lbs}$, and with its steel carriage and turn table $200,000 \mathrm{lbs}$. It is a rited breecl-loader, intended for harbor defence, and will prove a most formidable weapon if it answers expectarion. Thus far it las never been fired, having been put on a car, built especially ior iss transpor:ation, and brought direct from the foundry to the Exposition building. The diameter or the hore is 14 inches; weight of steel shot, 1,212 lbs. ; shell, $1,080 \mathrm{lbs}$., with a bursting clarge of only 17 lbs . The clarge of the gun is $110-130 \mathrm{lbs}$. Length of
gun, 17 feet. The insignificance of the bursting charg is gun, $17 \frac{1}{3}$ feet. The insignificance of the bursting clarg? is explained by the fact that the deep grooves required for the
lead case leave no room for a heavier charge. The cast-steel in the shell weighs 843 lbs ; the lead jacket, 220 lbs.; the bursting charge, 17 lbs : : total, $1,080 \mathrm{lbs}$.
The inner tube of the gun weighs twenty tuns. It was forged under the fllty-tun hammer, at Krupp's founäry, from a massive ingot of forty and a quarter tuns. The waste was over twenty tuns, or fifty per cent. There are three sets of
cast-steel rings at the breech, and two at the muzzle. These cast-steel rings at the breech, and two at the muzzle. These
weigh altogethor thirty tuns, and are manufactured without welding from rectangular pieces of metal split down the center, opened wilh wedges, forged under the hammer, and fin. ished in the rolling mill. This gun is an admirable piece of work, and is a remarkable evidence of what is pos-ible in the manufacture of heavy guns. Sixteen months of constant work, day and niglit, were expen ?ed upon it. It is claimed that the machinery for working it enables two men to handle it with ease, elevating, depressing, and turning the gun so that
ject ject
Besides this mammoth gun, Krupp eshibits a 9-inch breech-
loader, weighing twelve tuns, forged as described, without loader, weighing t welve tuns, forged as described, without
welding, and all from one of the trunnions. This gun has been fired one hundred and twenty times, with forty-five pounds of powder, the service charge being from forty to forty-five pounds. It carries a solid thot weighing three hundred and thirty pounds, and a shell of two hundred and seventy-five pounds. A smaller
gun of Krupp's manafasture is a rifled, breecl-loading field gun of Krupps manatasture is a rifled, breech-loading field
piece of crucible stecl. It is a 4 -pounder, seventy-four incles in length, weighs six hundrca aid five pounds, with a 3 -inch bote, and ca rites a charge of ne pound, throwing an eight-
ard-alial! peond sleell. Anoulher German firm Berger \& Co eard-uthal!-paund shell. Another German firm, Berger \& Co,
of Westhalia, cxtibit some guns of lage caliber. The larg of West p halia, cxtibit some guns of lange caliber. The larg.
est is an 8 -incl gun, with a breech-loading arrangement similar to Krupp's, though more simple in action. Berger \& Co. have made many guos for the Prussian and Rassian Govern-
ments. Their chief repatation, however, is for steel gun barments. Their chief repuatation, however, is for steel gun bar-
rels; nearly all ol the barrels of the needle gun being drilled out of the solid bar, at their manufactory. Petin \& Gaudet, a French firm, exhibit a hooped soft-steel gun, of sisteen tons weight, $9 \frac{1}{2}$ inch bore, and carrying a three-hundred-pound cannon rings or hoops. Tp to this year they have supplicd
rings for eight hundred cannons to Italy, for five hundred to Spain, one hundred and thirty to Russia, one hundred and
eighty to Denmark, twenty-five to Turkey, forty to S weden eighty to Denmark, twenty-five to Turkey, forty to Sweden
and one hundred and twenty to England, besides thess furand one hundred and twenty to E
nishcd to the Frencl Government.
The Swedish fovernmernt exhibits two cast-iron Finsburg guns, ncarly like our fifteen-inch gun in shape and general character. One is an eleven-inch smooth-bore, without reën force, and the other a four-grooved nine.inch rifled gun, wit a steel reientoree at the breech. Both of these guns are muz-zle-loaders. They have been severely test ; f first with two rounds of thirty pounds and one-hundred-and-sixty-pound shot, then with forty-pound charges and shot, increasing in weight at each round, from two shots weighing three hun dred and twenty pounds to eighteen, weighing altogether dred and twenty pounds to cighteen, weighing altogether
2,880 pounds, and filling the gua to the muzzle. Sweden is striving hard to regain her old reputation as a manufacturer of guns, and recall the days when. most of the states of of guns, and recall the days when most of the states of
Europe came to her workshops for their heavy ordnance. Ruseia, Austria, and Belgium exhibit a few guns, but nothing worthy of note.
Coming now to the English department, we find the rival systems of Whitworth and Armstrong fully presented. The
largest gun shown by Sir William Armstrong \& Co. is a ninelargest gun chown by Sir William Armstrong \& Co. is a nine inch wrought-iron muzzle loading gun, rifled, and weighing twelve and a half tuns. Whitworth's heaviest is a 150 with specimens of sh. t and shell. Major Palliser exhibi is a 0 -inch gun, weighing thirteen tuns, manufactured at the Els wich ordnance works. It is a coiled, wrought-iron tube, two inches thick, over which is cast an ordinary cast-iron cannon A Fraser gun is also exhibited. It is a 12 -inch, weighing 52, 640 pounds, and is made in four pieces, instead of Armstrong's eight, which is the only difference between them, the Fraser eight, which is the only difference between them, the Fraser
gun being nothing but the Armstrong, with improvements gun being nothing hut the Armstrong, with improvements
introduced by Mr. Fraser. The length of bore in this gun is twelve feet, one incl ; the outside measurement fourteen fect three and a half inches. It is rifled, with nine grooves, spi ral, increasing from one in one thousand two hundred to ore
in siz hundred, or fify calibors. Its elongated projectile in six hundred, or fifty calibors. Its elongated projectile
weighs six hundred pounds, and is thrown by a clarge o seventy pounds, with an initial velocity of 1,240 fect per sec ond. The Captain, a new English turret ship. is to have $t w$, of these guns in each of her turrets.
A 9 inch, twelve tuns, and a°-inch, six and a half tuns, the usual British nava' guns, are also exhibited ; besides a 7 -inch breech-loading, polygrooved gun, on Armstrong's vent system. The British Government exhibit, in addition to the dis play of private manufacturers, ten piecesin all. On the whole the British department is the most complete of all in the way of ordnance.
America makes a poor show, though the peculiarity of the few guns exhibited has attracted much attention to them. One is the Gatling battery gun, of wLich two specimens are presented, Loth six-barrel guns, one $5-8$ inch bore, the other 1-inch bore. Then we have the Ferris gun, with its claim of a nine mile range, and its enormous charge in proportion to its size. The one shown is a chamber gun of one and three fourths inch bore, carrying a ten ounce sperical and a twen y-seven ounce conical ball. The chamber is cone shaped vith an average diameter of two and seven-eighths inches ad an average length of seven and a half inches. The depth of bore is thirty-one and a half incles. Thisgun has been fired one hundred and forty-seven rounds, and has attained a rang of nine miles, with an initial velocity of 2,200 feet.
Though we have so slim an exlibition of American ordance, the deliciency is in a measure compensated for by the trial our favorite 15-inch gun is receivin y in England. We need have no fear as yet in regard to its capacity to cove with anything this Exposition affords in the way of heavy guns The huge guns exhibited by the French Government, and by Krupp, are formidable in appearance, but their enormous di mensions are serious objections to them. Our 15 -inch gun
weiglis 43,000 pounds, but one half the weight of the French 16-inch gun, and scarcely more than one-third of Krupp's un tried monster. Beside, thisgun las endured the test of actual service, while there are grave doubls of the reliability of these
heavy Frencl zud Prussian guns. No gun is stronger than heavy French ond Prussian guns. No gun is stronger than
its weakest roint, and the weak point of these guns is their breech-loading arrangement, which the English are d scard ing, and which we have never tried. Krupp's gun is the least
objectionable in this respect, but I hardly think even Mr. objectionable in this respect, but I hardly think even Mr
Krupp himself would be willing to put it through the test to Krupp himself would be willing to put it through the test to which the Swedish guns are subjected, as above de:cribed guns exhibited by Krupp, with the exception of the small mountain cannon, Thus far Krupp has manufactured 3,500 steel guns, and has orders for 2,200 more. Of thesp 5,700 guns 19 iu 20 are iffled breech-loaders, in caliber from 4 lbs to 300 lbs , with a few of 600 lbs a ąnd $1,000 \mathrm{lbs}$. In value they amount to a to:al of nearly $\$ 12,000,000$. The admirable character of Krupp's light steel guns is well known, and thei longevity is remarkable. How he is succeeding with heavier
ordnance remains to be proved. He has certainly demonordnance remains to be proved. He has certainly demon
strated his ability to liandle metal in ma-ses large enough to forge guns of the most extraordirary dimensions, but the breecl:-loading apparatus he has invented is yet to be proved in these large guns. In the large gun I have described the charge is introduced at the side of the breech and not at the rear. In the heavy Frencl gun, on the contrary, the shot is
introduced from the rear, and the breech closed by a screw introauced from the rear, and se brecend tightens the joint In both guns, however, the opening made at the breech must seriously weaken the gun. It is not long since the breech was blown out of one of the French guns on board the Mon was blown out or one of the French g,
tebello.-Cor. Army and Acuy Journal,
plating or coating metals with metals.
Not very long ago, and quite in the remembrance of mosi who are likely to read this journal, the prin ipal manufac tures thar, might have been described under the above title were the manufacture of tin playes, of tinn-d culinary uten-
sils, and the op-ration of Slieffield plating. The proce-s of galvanizing" (coating iron with zinc by immersion in the molten metal) has materially interfered \times ith that of tinning and the incrounction of the principies of electro-deposition, to produce articles of beauty at a cheap rate, and to serve many ust ful purposes, has altered the condition of the Sheffiel plating trade to such an extent hat it only exists to produc certain articl s of large corsumption and well-defined form.
Great changes can also be traccd in the theory aud practice of electro-deposition it eelf. Smee, in his admirable work, laid down the "laws" of electro-metallurgy, as he was pleased to term them, in which the evolution of hydrogen during the ime of deposition was made to determine the character of the deposit obtained; he also put formard certain views re lating to the deposition of alloys in which the use of intens battery power was pointed oul as a posisible means of accom-
plishing that purpose. Now, it is found that, by the use of plishing that purpose. Now, it is found that, by the use of
akaline solutions, many deposits can be obtained in a regu alkaline solutions, many deposits can be obtained in a regu line form during the evolut'on of hyd rogen, and that, also, from certain alkaline solutions, brass and cther alloys can be electro depisited io a reguline form without the use of more battery power than is necessary to compensate for the want of clectric conduction in the solution employed.
In the five years that are comprised between the yeara 1861-1865, inclusive, the increas ${ }^{*}$ of knowledge (practica! and th-oretical) does not a apear to have been very great in alion to the suljeet at the head of this riaper. The chief attempts at improvement have been made in the practical de tails of the tio-plate manufacture. The use of ordinary resin as a flux, above the molten metal, is provided for by special arrangements by Messrs. Banks and Morgan, in their patent specification: Messrs. Liforeswood and Whytnck employ ordinary resin, in conjunction with tallow, by using a plurality of coating baths worked in connection, by the aid of machinery. With a riew to economy of material and of work ing, rollers, guides, and other machinery, are employed in c retain inventions. Some in entors set forth improvements in the fluses used (independent of the abjvementioned resin), comprising potas:ium, ammonium, zinc, tin, and cadmium chlorides. H. J. Madge manufactures a cheap alloy for coat ing iron plates, by using lead and antimony, with perhaps, a small quantity of tin. instead of tin alone Messrs. Nurse use an annealing pot with a double case. Lastly, George Tom ins coats lead and terne plates by pouring the melted metal over the plate, and nses an alloy or ni kel. zinc, and lead.
Electro-gilding has made but little practical progress duri Electro-gilding has made but little practical progress during
this time. The ordinary solution of gold trichloride in potas. this time. The ordinary solution of gold trichloride in potas
sium cyauide is used by Martin Miller to gild wire, and by sum cyanide is used by Martin Miller to gild wire, and by
Kullmann to ornament metal. The depositing solution em lloyed by Moore contains potassium ferrocyanide, "pear potash," potassium iodide, sooium carbonate, copper cyanide silver cyanide, and "fine gold ;" it is said to, five a rapid, durable, and richly colored deposit J. B. Thompson prepares iron or steel articles for electro-deposition by tinning. and then p:ckling and washing them ; he also ornaments silver surfaces by electro-gilding them mith a polarized paint brusl containing the electro-depositing solution.
In electro-silvering, the following are the principal points that appear:-Martin Miller employs a solution of silver chloride diesolved in potassium cyanide to coat wire. Moor uses electro-magnetic force, but does not state his silvering
solution. Weil's solution for previously coppered articles is made by means of silver nitrate, hydric tartrate, ammonia and potassium cyanide ; tliss solution gives an adherent and cither brilliant or dead coating.
An the solutions for electrocoppering are evidently in tended to coat iron or other easily oxidable metals Mille uses a mixture of copper sarbonate, potassium cyanide, and potassium or sodium carbonate, to coat wire ; the alkaline portion of the solution is first boilea, and then the copper carbonate is added, the misture being kept bo:ling until ammonia is freely given off: Walcott charges a strong potas-sium-cyanide solution with copper by clectrolysis. Weil's
electrrs-coppering solution is formed by adding a solution of elopric sulphate to a solution containing sodic potassium tartrate and sodium hydrate Thompson deposits copper (on an trate and sodium hydrate Thompson deposits copper (on an
article already electro-coated with iron) by means of a aoluarticle already electro-coated with iron) by means of
tion of hydrated cupric oxide in sodium hyposulphite
Among the other inventions that may be mentioned are the following :--Marshall prevents the fracture of metals, owing to their crystallization, by coating their bearings with soft metal, by runniog the mollen metal on to the inclosed bear ing. Le Chatelier deposits aluminum by electrol ssis of fused sodic aluminum chloride. Bennett tins lead pipes, that are made by hydraulic pressure, by the overflow of the melted metal. Beslay electro-coats iron with tin preliminary to the final electro-coating. Holley coats iron with aluminum, in the fire, by means oi a firit that contuins felspar, silex, china clay, and a potash clay, when an external vitreous coating is required. When only a coating of aluminum is wanted, bo
racic trioxide is added to a potash clay ; the slag throws itself racie trioxide is added
oft as the iron slluriuks.
Owing to the trouble of arriving at the history of patented inventions prior to the year 1855°, maxy important improve ments have been repatented. 'This difliculty, however, has been much lessened by the printing of the specitications, su perintended by Mr. Woodcroft, in his successful endeavor to parry out the amended patent laws. Lately, and more espe accession of strength by the publication of "Abridgements
of the Specifications,"in series chronologically arranged, and drawn up by competent men acquainted with the subject to which each series refers
Nothwithstanding this, the number of inventions still repatented may be dramn irom the following analysis of those relating to our subject between the years 1861-1865. in lusive:-
Resin was used on the surface of melted metal as early as A. D. 1786. Slvering glass with silver, which is afterwards electro coated with copper, is referred to in the year 1852. Apparently, the first patent in which machinery was used for tinning iron or steel pla*es was secured in 1852. A solution of copper carbonate in patassium cyanide was used to electrodeposit copper in 1853. Although Smee sets forth the deposition of copper from its electro-solution in potassium cyanide, it forms the subject of Walcott's patent. Smee, in 1851, and Alexander Watt, in 1860, electro-deposit silver from a so lution of its chloride in potassium cyavide. Smee points out the electro-deposition of gold from a solution of its chloride in potassium cyanide. The combination of hydric tartrate, ammonia, and potassium cyanide, was used in 1857 to electro deposit silver.-Ironmonger (London)
STEAM FIRE ENGINES AND THE PETROLEUM FUEL.
In our issue of Oct. 26th we copied from the Boston Traveler an account of the performances of a steam fire engine in that city using petroleum for fuel. The report was quite fa vorable to the performance of the engine and to the value o petroleum as a means for generating steam. By reference to that notice on page 265, current volume, our readers will un derstand the force of the criticism which we have received from a "Looker-on," who is evidently a practical naan. He says: The engine had but one stream on and the hose could
be compressed by the foot. He stood by the engine half an hour, and during that period it was stopped several times to get up steam. The gage never showe over 60 pounds pres sure: If the experment was as successful as the Traveler represents, our correspondent inquires why was it taken of the next morning.
We have yet to learn of any experiment made with this fuel where its advantages over coal were undeniably demon strated.

OFFICIAL REPORT OF
 Patcines and Chams

Issued by the United States Patent Office,

PATENTS ARE GRANTED FOR SEVENTEGN YALARS the followin eing a schedgle of tees:-

In adifition to which here are some small revenve-

- Pamphlets containing the Patent Laws and full particulars of the mode of apply ng for Letters Patent, specifly ng s ze of model requir red, and much MUNN \& CO., Publishers of the Sc.entific American. New I
70,143.-Mold for Artificial Teetif.-A. M. Asay, Phila

 substiutially as and for the purpose Mescribed. Cans.-Silas O. Avery,

 flutd substa. Ces. I claim the new fastening herela described namelv a treenail combined
With a metallic socket and wedges appied thereto, substantially as speci

 described.
$70,156 .-P l a t e d ~ W a l i e .-J . ~ C . ~ B l a c k m a n, ~ W e s t ~ M e r i d e n, ~$
 ${ }_{70,157}^{\text {Beribed. -Boot and Silos Shisld.-G. P. Bradley, Lawrence }}$

 $70,159 .-G A N G P$ PLow. $-G . T$. Brewer, Prairie du Rocher

 70,13is.-CHENILLE. Winili Mo Canter (assignor to J. Henry
 70,164.-PIcser For Looms.-Willam E. Card and Pardon

1 Iep sit of carbon, substialially as dcsertres. 1

 70,169.-Device for Truss Sprivas.-Geo. A. Colton, Adri

 0.171 - Silutthf.-George L. ©́randal, Yitcher, N. Y

 70,174.-BUNIE FOR LOEGINGY SLEETGH.-James P. Davis,

 I Hadion, Mast

 70,176. - Manufacrufe of Enameled and Japanned

 I claim the construction of the pneanatic sprny walishithot ot tie case, A

 $0,179 .-C$ Cisdoce -D. A. Durham, Pilatka, Fla.
 70,180 - - Hoisirva Machive-- Jacob Edson, Boston, Mass.

70,183-8uricac Tires on Wheels-Anders Fagerstrom

 fo, 185 i.-Ant-hiching attachment for Horses -o. h. P.
 onerate substanti2lly as and tor the purposis set forth Fredericksburg O

0,1199 .-HIA STACKER.-J. Forsher and J. C. McCland

 0, 90 Cond ps For Hooks and Exes. - Maltby Fowler

 T, $192 .-$ Machine for Cutting Wo*d Gear.-Thomas F

 , tod ass.-CAPPING Screws.-John Gardner, New Haven, Ct

 , 193-CONR SIILLLHR -Georse Goe way (assignor to him

 hanier and ior tie purpos stastantaily assect frth

 0,188 . - Ventilating Millstones.-John Gray, Dubuque

 0,199.-RATCHET Drilf, -Tohn Gray. Litchfield. Ill
 0,200 -- F URNACES F FeK Stean B IILERS.- Jacol Gren, Nor

 sat s, whits and onher soure recentales,

 70,003 .- Litaitining Arbester for Telegrapha - Wm. H

 O, 204.-TRY SQuates.- elson Hamblin, Flatbush, N. Y.
 $70,205-M A M H N R$ For Curiting soap.- Cyrus H. Hardy

 70,207. G s Sol Cooning Stove Apparidrus.-IJavid G. Has

