The Mosque in the Champ de Mars, Paris. On the preceding page is a large engraving of one of the many structures erected in the grounds of the Exposition representing the peculiarities of architecture of the different nations. This feature of the exhibition is not the least in teresting of the grand display. The engraving herewith presented is one of a number we have procured from Paris, representing scenes in the Eshibition, which we shall publish from time to time. We give a translation of the description of the mosque from L'Exposition Universelle Illustrée,
The name mosque is derived from the Arab word mesdchid (place of prayer), through the intermediate Italian word moschea. The most characteristic details of these edifices are moschea. The most characteristic details of these edifices are ated with crescents at their tops, known as minarets, and from whose hights a crier, the muezzin, calls the "faithful" to prayer. The mosques are generally of square form, in front of them there is ordinarily a courtyard furnished with all that is necessary for ablution-which forms such an important part of the worship of Islam. The interior is simply ornamented with arabesques entwined with verses from the Koran. The most rigid Mussulmen utterly proscribe the repre sentation of any object, animate or inanimate, and their priests instruct them that at the last judgment the figures delineated by designers, artists, or sculptors will come and demand of their authors to give them a soul under penalty of perdition. The ground floor of the mosque is covered with carpet and mats ; as in Spanish countries one never finds any seats. At the southeastern part of the edifice a pulpit is raised for the priest, and the devout "faithful" should alraised for the priest, and the devout "faithful" should al-
ways turn their eyes in the direction of Mecca-which is ways turn their eyes in the direction of Mecca-which is
indicated by a kind of niche. Mussulmen alone may enter indicated by a kind of niche. Mussulmen alone may enter the mosque ; yet frequently in Turkey, Algiers, and the East
Indies this rule is daily infringed, but of course not as often as is ventured on in the Champ de Mars
Adjoining each mosque are a number of charitable establishments, sucr as schools, hospitals and kitchens for the poor The expenses of worship and almsgiving are covered by the revenue from real estate that for this object is exempt from taxation.
The mosque of the Chamn de Mars is simply animitation on a small scale of the "Green" Mosque of Brusa. All the details of ornamentation have been copied with the most scrupulous care from those of the above named edifice. As to the proportions, they have been rigorously followed from princi ples adopted for the design of the monument called Yechi Turbé-constructed at the same date as the Mosque of Brusa by the Sultan Mohamed I., one of the Ottoman sovereigns who, following the example of his predecessors Mourad and Bajezet, has largely contributed by his numerous pious en dowments to constitute Turkish art-which is much more ar chitectural than ornate.
In corformity with the usual custom, the plan of the Mosque of the Champ de Mars is square. The edifice is surmounted by a dome, supported by lozenge-shaped arches, thus uniting the circular portion to the square base. Preceding the principal hall is a vestibule for the purpose of receiving the shoes of the faithful-for with naked feet alone may they enter the holy place. The pavilion, situated on the right, and at an angle with the façade, contains the fountain (zibil), and in the corresponding one on the left, near the
placed clocks to indicate the hours of prayer.
The minaret that surmounts the Mosque of the Champs de Mars gives but a feeble idea of that of the Mooque of Brusa, which towers 220 feet above the city and adjoining country.
In the interior of the principal hall you see the mihrab, near In the interior of the principal hall you see the mihrab, near
which they turn to worship, and the miraber, where the priest which they turn to worship, and of miraber, where the priest
reads in a loud voice the verses of the covered with inscriptions, but can receive no images or ther material objects.
The mosques are, in all Oriental countries, supported by the special endowments of private benevolence; consequently they are very varied in their proportions, as well as in the splendor of their ornamentation, thus following the fortunes of their founders.

$\mathfrak{C b u r e s p m a d e t f e}$.

1he Eetitors are not responsible for the opinions expressed by thew cor
respondents.
Mississippi Levees--nViews of an Old Planter.
Messrs. Editors:-I have noticed in your issue, No. 14, an article on the subject of the Mississippi levees, by Mr. Berry, of Port Gibson. The subject is one that has been consider ably agitated of late, in numerous contributions to our citi papers ; and the discussions were to the address of our citijuns whe of their merits. When they coutained sound views they were heeded, and, when preposterous or absurd, they were suffered to drift into oblivion. But when a contributo undertakes to enlighten the outside world, through the col umns of a distant paper, and one calculated to exercise so much influence as the Scientific American, it becomes im portant to refute the errors which he may have committed His argument is to the address of Congress, before which the question of the construction of levees on the Mississippi wil be brought up again, and who will very naturally look for the banks of the river, and an owner of lands. Ihope, there fore, you will inaulge a resident and planter of more than thirty years in stating the conclusions to which he had ar ived from actual observations, a
hich the work should be done.
1st, Regarding the outlets to be given to the river above the Balize. The principal one now existing is the Atchafa-
laya, below the mouth of Red River, which discharges a large
volume of water. It has been on the increase for a number
of years, and seems to promise in time to take all the waters of Red River. The old inhabitants say that the fords in it have disappeared. The only other one existing is Bayou Lafourche, about two hundred feet wide, by twenty-five feet deep; but the current is not rapid, and it will probably not increase in size on account of its filling up about fifty miles below. The Bayou Plaquemine was about double the size, but it has been stopped up lately, as well as the Manchac, a long time ago. The effect of the stopping up of Bayou Plaquemine was to reclaim from inundation thousands of acres of land of first quality. No doubt it was for a similar object that the Manchac was closed. The opening, if made now, would necessitate leveeing on both sides, a distance of about a hundred miles, to prevent the inundation of a large amount of land now in cultivation. Beside, the effects of such an outlet would be disastrous to some of the best interests of the State, and of New Orleans. It would destroy the fish and oysters from which thecity is now supplied ; it would change the watering places from salt to fresh water: it would, in a short time, cause a deposit of sand and mud, injuring or preventing the navigation of Lake Pontchartrain, which is now the means of transit of a large trade, and of the products of the forest, such as lumber, pine wood, bricks, sand, tar, rosin, etc.; and all this to economise a few feet of levee. This would be the only possible outlet of the river on the east. On the west it would be equally disastrous, by drowning out the richest portion of the State in sugar lands, and it would be impossible to lev́ee such an outlet, because it would run through an innumerable number of lakes and bayous forming a connected network from the entrance of the Atchafalaya to the ea shore, from fifty to one hundred miles in width
Mr. Berry takes it for granted that contracting the banks of the river would have the effect of filling up the bed, which would require the levees to be made higher every year, until they would oome to the hight of 100 feet, and threaten drear destruction to all the country around. The picture that he draws is perfectly appalling. But I beg leave lets were closed, and the river contracted and kept within its banks by levees, that the water would rise higher ; but let us see how much by adding up the amount of the outlets, including Bayou Plaquemine. Bayou Lafourche,5,000 square feet; cluding Bayou Plaquemine. Bayou Lafourche, 5,000 square feet;
Plaquemine, 10,000 ; the Atchafalaya, 40,000 , or an aggregate of 55,000 . Supposing the river to average one mile in width, it would be equal to a rise of nine feet (and this is an extreme would be equal to a rise of nine feet (and this is an extreme
case that could never occur), can it be doubted that the acceleration in the current would wash out the bottom, and make it deeper, instead of filling it up? An example in point, of the effect of the current in washing out the buttom, is what is seen yearly in Red River. Above Alexandria the river spreads into many lakes and a network of bayous, but at this point the waters are all united into one channel, because of a range of hills here crossing the river and forming what is called a fall. The water here rises to a hight of thirty feet. The rise in the river, as well as the fall, are very sudden, occurring in the space of eight or ten days. After a fall the is a depth of only two feet of water after the fall; but in a few days the channel is again cut out by the action of the current to a depth of eight or ten feet. I believe this law to current to a depth of eight or ten feet. I believe this law to
be universal in rivers carrying much sand, and I see no reabe universal in rivers carrying much sand, and I see no rea-
son why it should not apply to the Mississippi. And what is nine feet for the Mississippi when compared to thirty feet for Red River? In the latter is verified the fact that the current is not rapid in the bottom; but would a rise of nine feet in the Mississippi be sufficient to prevent a current in the bottom? But if the rule be that stopping outlets would cause a rise, it must not be taken for granted that the rule will work both ways. If outlets were made additional of equal capacity, it would not cause a fall of nine feet below the actual stage, nor approaching it. I have seen large breaks in the levee of a mile, where there was a high levee, through which the water flowed in a torrent, taking probably one third of the stream ; the fall above was not more th
eet a few miles up, and still less below.
But there is no necessity of contrac
But there is no necessity of contracting the banks of the Mississippi. The land is nearly level, with but a slight inclination from the river. Removing the levees further from
the banks would be equivalent to an outlet of the same dithe banks would be equivalent to an outlet of the same di-
mensions. And this plan would have a great advantage in this, that in a few years a deposit would take place betwee the bank of the river and the levee, and in many places I have seen it nearly as high as the levee, thereby diminishing considerably the risk of the levee giving way by the pressure of the water, and facilitating its stoppage in case it should break by accident. I say by accident, because with proper care and diligence a levee ought never to break. The cause the water line to the land side, which gradually wash away a large excavation; they should be stopped on the water side. 2d, Washing away by the current when the levee is badly made. 3d, By caving, when made too near the edge where there is deep water. The usual way in which levees are made by contractors and incompetent superintendents is to pile up the dirt with wheel barrows, and for which the pay is so
much per cubic yard. Levees made in this way will slide down with their own weight as soon as they are wet ; example, what happened this last year for Grand Levee off Pointe Couper. But the right way is to pack every alternate layer of about one foot in thickness by running over it with a horse proper base (about three foet for every perpendicular foot), is sure to be tight, and will perfectly well resist any pressure of water and the washing of the current, without any brick wal
changed radically wherever there is a bend, liable to be washed away or to cave. The levees are now generally too near the water. As for year after year they have been removed further back, it happens that in many places they have come up very close to buildings and valuable improvements, which has been the consideration for not placing them far enough.
It should be observed that in all streams the line of the cur rent is longer than one running in the middle of the stream The current in leaving a point strikes the bend on the oppo site side, a mile or so below, from the next point the next bend, and so on alternately. So that the bends are always cutting away by abrasion, and, consequently, the river tend ing to get more crooked. This is exemplified in the many cut-offs which take place by a bend cutting a way across a peninsula; and generally the old bed fills up by a deposit of sand
I know many old levees standing undisturbed for fifty years, not more than three or four feet high, some distance
above the city of New Orleans; and actual measurements made at a distance of time of fifty years (the last made by Mr Ellet, U. S. Survey) show no difference in the width, depth or hight of the river, notwithstanding all the levees that have been above in that time.
Mr. Berry admits that it is a law of all flowing streams to cut out a channel, but, "in a state of nature," before the water shed is divided by cultivation. This is very true to a certain extent, but very far from being universal. The law dces not apply to streams like the Mississippi, the Missouri, and Red River, which flow in valleys of alluvion, where thei beds are perpetually changing, not according to any known rule or law, but seemingly by mere caprice. Those streams rule or law, but seemingly by mere caprice. Those streams
bear large quantities of sand and mud in flowing through vear large quantities of sand and mues where there is no cultivation. He refers to the levee system in Europe, "which demonstrates the fact that levees must be made higher and higher every year, until they will become several hundred feet higher than the origina banks of the river!" It would be better to cite localities and examples. I have seen it stated somewhere, but I canno vouch for the truth of it , and it is the only example that know, that the bed of the river Po, in Italy, was raised highe than the adjoining lands by the effect of levees. The system there was probably commenced before the time of the Romans, and it happens to be a mountain stream, a perfect tor rent, carrying heavy pebbles. Would it be fair to say that the same effects would occur for the Mississippi in our time No doubt, before the war, the planters were always in dread behind their levees. Why? Only because they were badly made. Without the war, I have no doubt they would be per fect now. But the work has become impossible by the plant ers, because they have been impoverished and deprived of th means of controlling labor to effect the work. A work of such magnitude, and essential to the interests of several States, is really a national work, and in justice should be made by the Government, especially when in some instances the levees were destroyed by the Government. I have worked in stopping crevasses or breaks in the levee, where controiled the labor of six hundred men, above or in the foaming waters, day and night. It could not be done now for love nor money. I think Mr. Berry's philosophical remedy rather an unfortunate one, no es ben trovato, suggesting deep cultivation, two to three feet, to absorb the excess of waters. He does not inform us where this excess of water will ge, except by evaporation; and, for my part, I think the must ultimately go to the river. He does not suppose that all the land is to be cultivated-hills, valleys, swamps, rocks mountains, and all; from these places the water must ce tainly go to the river. So that the hope of relief, which he holds forth by rendering the waters of the Mississippi con trollable by man, seems an illusion
As to the question of canals for navigation, in connection with the outlets proposed, they are not wanted. There are natural ones enough, and some to spare ; and the railroad is better and cheaper to make.

New Orleans, La.

J. C. Delavigne.

Beam Engines Sticking on their Centers
Messrs. Editors:-In yourissue of October 5th, I noticeda quotation from "Engineering," criticising "American Beam" or single cylinder marine engines, with reference to thei liability to being caught on their centers; also editorial re marks, closing as follows: "The invention alluded to is in tended only for infrequent contingencies."
. Being acquainted with the performance of the engines of the Pacific Mail Steamship Company-the finest of this class -as also with the object of the invention alluded to, a few words of explanation may not be out of place.
While the valves of these engines are worked by the eccentrics, or, in technical terms, "hooked on," no assistance is ever required is passing the centers; this is shown by the steamers' logs. But while moving in port, or working at the dock, with the eccentrics unhooked, and the valves worked by hand-so as to stop or reverse on the instant-they are liable to be caught. This danger increases with the size of the engine, or lack of skill on the part of the engineer working the valves. Occasionally there are causes over which the engineer has no control, as in working our ferry boats through ice which obstructs the wheel floats, stopping the engine at the point of least power.
While this invention of Messrs. Vanderbilt \& Sims is at hand in any case of emergency, it is more especially designed for use in port, and to push the engine off the center after it has been placed there for adjustment, that being the only point at which the engine can be properly adjusted and keyed up."
The use of these hydraulic jacks will prevent such serious
accidents as caused a man to have both legs broken on the steamer Rising Star, in the latter part of the summer; and another, more recently, to lose his life on the steamboat Pro vidence. Both these accidents occurred while in port by prying the engines off the cen
has been the usual custom.
Fear that the term "infrequent contingencies" might cause the owners of our steamers to neglect the safety of their em ployés, is my apology for having so far tresspassed upon you valuable space. Respectfully yours,
New York city.
J. W. Cole.

The Water Ram in Pump Pipes.

Messrs. Editors :-It is a well known fact that all pump hat have long suction pipe and from twenty-five to thirty fee to raise the water below the pump, make a snap or jar at each revolution of the pump, and in time wear out or break off the flange of the pipe. But the remedy is not alway known, although you may have published it and I not have seen it. The remedy is this: Take an awl or some instru ment with which you can punch or drill a small hole in the pipe ; go down near the surface of the water you wish to rase and make a small hole in the pipe; then start the pump, and he water and air will mix and rise in the pipe to the pump together, and of course the water and air mixed, being lighter han the water, will take all the jar out of the pump and pipe But the pump will not throw so much water. In most cases however, for supplying water for steam purposes, the pump throws a surplus of water. Also where a pump does not make near a perfect vacuum, by letting in the air it wil bring the water. This I have tried where the pump raised the water within five feet of the pump, and it would not come any further till I made a small hole in the pipe near the sur face of the water; then the pump threw it in form of foam in sufficient quantity to supply the boiler. How much air to let in I cannot say, nor how far it will hold good, but mase a first a very small mole, and keep increasing it till you ge he snapout of your pipe and still havewater enough. have been using the above for twenty years, and now use t my mill when the water is low in the river. James Bell. Ullin, Ill.
[Your method of preventing the "snap" or water hamme in your pump pipes is rather primitive-not within fort years of the present hydraulic engineering. The proper way to make any pump work is to put on the supply pipe a vacu um chamber of a capacity of double or more that of your chamber. This will not only stop the water hammering but save power, inasmuch as the momentum of the ascending column will be utilized by being stored for the next stroke instead of expending its force in the destruction of the pipes [Eds.

The Colors of Soap Bubbles.

Messrs. Editors :-Reading in your valuable paper colors of the soap bubble. His theory regarding the mode in which these colors are formed recalled some experiments made by me last fall and substantiate the conclusions then rrived at. The old theory, and the one now taught is, that the colors are formed by the varying thickness of film or body of the bubble. Brewster's theory is, that the colors are formed by the flowing of secretions formed from the bubble itsel over the film.
My experiments demonstrate to all appearance this theory A preparation of oleate of soda caretully prepared was put into solution in pure water and a given percentage of pure glycerin added. Bubbles blown from this solution were very brilliant, and the colors seemed to flow over the film from the part attached to the pipe toward the lower part of the globe in irregular belts and streamers, beginning with the mont away as the menstrum ceased flowing, into a deep blue and ending with the bursting of the bubble. The belts or streamers rippled like tiny waves on the surface of a pond and from these ripples seemed to flash out the broken rays of light, changing constantly. The thicker the medium the more brilliant the display.

My attention was called at the time to this fact, but as my experiments were concluded for other ends, I forgot the facts and they were only recalled by the article referred to. I remember remarking at the time that the colors followed the flow of the menstrum from which the bubbles were made from the pipe down to the lower point, where it gathered in mall drops and fell off:

Alfred C. Pope.

Binghamton, N. Y.

Gravity, Inertia and Momentum

Messrs. Editors :-The following ideas of a conflicting na ture have suggested themselves. Will you be so good as to throw some light upon the dificulties proposed? It is known that within the surface of the earth the force of gravity varies directly as the distance from the center, hence at the center there is no weight. Let us take the formula,-"Momentum= Quantity of matter into velocity," and examine it in relation to a heavy body, supposed to be let fall into a shaft passing through the earth and its center of gravity. The question (no matter how the books have settled it), presents many in teresting phases. Would the body thus let fall oscillate about the center and gradually come to rest there, or would it com to rest immediately on arriving at the center of gravity?
Putting our formula into a mathematical form we have
$\mathrm{M}=\mathrm{Wt} . \times \mathrm{V}$. It is evident that weight at the center of the $\mathrm{M}=\mathrm{Wt} . \times \mathrm{V}$. It is evident that weight at the center of th earth is equal to zero, that is $W \mathrm{t} .=0$, hence
$\mathrm{M}=\mathrm{O} \times \mathrm{V} \quad \therefore \mathrm{M}=\mathrm{O} \quad \therefore \mathrm{O}=0 \times \mathrm{V}$, and hence $\mathrm{V}=0 \div 0$, which is the symbol of indetermination. It is not clear. there-
fore, whether $V=0$, or whether it is equal to some finite quantity.

At the center of the earth, since a body is without weight, how can it have momentum? or how can it have inertia, since the inertia of a body is in proportion to its weight? What reason can be assigned, therefore, for the cessation of motion, if the body have lost its weight, and with its weight consequently its inertia? Or, on the other hand, what reason can be given for the continuance of motion, since it is clearly without both momentum and inertia?
The same logic will apply to a cannon ball shot down into such a shaft. That is its weight becoming zero, its momentum also must become zero, and its inertia gone too, what tendency could there be either to go on, or to stop on arriving at the earth's center
If the motion should cease at this point what becomes of the initial force given to the ball? If it should continue to go on then it must have weight, momemtum and inertia at the momentit arrives at the center of gravity, a supposition con trary to the facts of the case. A little light upon this singu ar question will be received with much interest by a reade f the Scientific American.
Newville, Pa.
[The fallacy of the above consists in using W (weight) in he mathematical formula. It should be M (mass). On the arth mass is measured by gravity but below the surface or far from it the relation is very different.-EDs.

nteresting Facts about the Great pyramid.

Messrs. Editors:-I noticed in a late number of the Scientific American a short article on the "Great Pyramid," and some of the remarkable' deductions which have been made on its dimensions, ratios of parts, its structure, etc But what was in that article is but a drop in the bucket compared with the many wonderful and startling facts brought o light and admirably set forth in a work by Prof. C. Piazz myth, Astronomer Royal for Scotland, entitled "Our Inherit ance in the Great Pyramid." It is an exceedingly interesting work, and contains some valuable information in regard to British weights and measures. He gives a new system each, very similar to our present ones but modified and cor rected by the standards found in the pyramid. The French unit of measure (the meter) is equal to one ten millionth of quadrant of the earth's surface. But within the last few year the progress in the science of geology has enabled us to de termine " that the earth's equator is not a circle, but a rather irregular curvilinear triangle, so that it has many different equatorial axes, and therefore also different lengths of quad rants in different longitudes."
This you see throws their unit of length in a very unsatis actory light, making it very empirical and even more arbi rary than our own or the British present standard
The pyramidal inch is one five hundred millionth of the earth's polar diameter, a length which is invariable, of which there is but one, and consequently no possibility for mistake. There is no possibility, apparent at the present time, of intro ducing the French system at the time specified by Congress when it is to go into effect, and I hope it never will. It is unhandy, and will always be a source of annoyance to the common workman.
Let us have a system based on plain and already established principles which every one can comprahend, and after we have it, know that we have got that which is correct and wil tand the test for ages to come. The English language is the dominant language of the world, and let us have an English system of weights and measures. The change necessary to pass from our present system to the improved one is only to lengthen our present inch 0.00099 of itself, or an amount al
most inappreciable except in the nicer and most accurate most inappreciable except in the nicer and most accurat kinds of mathematical instrument making.
I would advise you to procure the book I speak of and give it a careful reading, and I feel quite certain that you will think much better of the systems proposed there than the much overestimated "French system." I will gladly condense the principal deductions and conclusions arrived at by Prof. Smyth, to be published in the Scientific American, i ou wish it, and let my work go for what it may be worth oward procuring for the noble and honorable working classe mechanics, farmers, merchants, etc., a simple, reliable, and nvenient system of weights and measures. C. B. Cole. Chester, IIl.
[Probably our correspondent could select and arrange some the facts to which he refers, so that they would be of in erest to our readers.-[EDs.

Lightning Conductorsw-wheir Proper Form.
Messrs. Editors :-Your correspondent " Electron," in No 15, page 227, current volume, is mistaken when he says tha the conducting power of a lightning rod is as the area of the ross section, and the remark that he quotes from a forme issue, that a strip is equal to a solid rod of the same surface, is also erroneous.
Electricity of high tension passes on the surface of conduct ors on account of its self.repulsive tendency, and for the same reason it will pass on the edges of a flat conductor. In the Agricultural Report of the Commissioner of Patents for 1859 there is an article by Professor Joseph Henry, that explain he whole subject. On page 483 there is an experiment il ustrated showing that the discharge is by the surface and not by the whole substance ; and on page 521 it is explained why a flat form is imperfect. Every departure from the form of a true cylinder is wrong in theory, and it is probably im material whether the rod is hollow or solid. If properly made and put up a lightning rod will as certainly carry off the water.
Oshkosh, Wis.

A Singular Cave.
Messrs. Editors:-I take the liberty of asking you a question ; you may answer it if you deem it proper. About four kilometres from the town of Pontgibaud and twenty-two from the city of Clermont in the department of the Puy-de-Dome France, there is a grotto which has been formed by volcanic lava; it is funnel shaped, about six or seven meters wide on
the top and two at the bottom and four meters deep; in the bottom there is a little spring running between the lava; in the summer that spring is frozen hard, no water, and in the winter the grotto is filled up with steam, and no ice. The colder the weather the denser the steam. Now can you tell why ice is formed in the summer and steam in the winter?

Wellsboro, Tioga county, Pa.
M. A. D.
cts. Speculation is idle till they re authenticated, and more details are given.-EDs.

Cleaning Cider Barrels.
Messrs. Editors :-I see among the questions in your naper the query "how to clean cider barrels." Take lime water and a trace chain and put them in the barrel through the bung hole, first securing a strong twine to the chain to draw it out with. Then shake the barrel about until the chain wears or scours off all mold or pummace remaining in the barrel. Then rinse well with water; after throwing out the rinsing water put in a little whiskey, turning the barrel to bring it in contact with every part and pour out all you can. Your barrel will be sweet.
J. McD.

Mamaroneck, N. Y.

Mount Hood.

The hight of this peak of the Rocky Mountain chain has never yet been satisfactorily determined, the latest measurements not being considered sufficiently reliable to settle the controversy which during the last year bas been carried on by the California and Oregon papers, with considerable animation. In 1842, Lieutenant, now Rear-Admiral Wilkes, measured the mountain, and called it about 23,000 feet high. Fremont, the next year, made it between 19,000 and 20,000 feet. Those calculations were made by triangulation, and were necessarily imperfect and not much relied upon for strict accuracy. In August of last year Professor Wood, of California, ascended the mountain and reported its hight to be 17,600 feet. This was regarded as the most reliable measurement so far had, and still left it the highest mountain in urement so far had, and still left it the highest mountain in
the United States. As Oregon has the westernmost point of the United States. As Oregon has the westernmost point of
land (Cape Blanco) in the Union, they were also inclined to plume themselves on having the highest mountain peak. put California with its Shasta of 15,000 feet objected to this, But California with its Shasta of 15,000 feet objected to this,
and their Professor Whitney dec'ared Mount Hood to be only and their Professor Whitney dec'ared Mount Hood to be only
12,000 feet. Thus the matter stood till this September, when 12,000 feet. Thus the matter stood till this September, when
Lieutenant Williamson, of the Topographical Engineers, United States Army, ascended the mountain, better prepared to measure it, as is supposed, than any of his predecessors. He has not published any report, nor pretended to give the precise hight, but places it about 11,000 feet. In all this scientific conflict the unscientific public are left in as much doubt as ever, and inclined to think that they know as much about the hight of Mount Hood as formerly.

In this connection we copy from an exchange the following graphic account of an ascent of this peak which was made by one of its correspondents:
" Monday morning, at ten minutes after six, we left our camp, armed with pikes, hooks, ropes, and such other things as we thought would lessen the danger and facilitate our journey to the top of the mountain. We carried with us a thermometer cup, spirit lamp, and glass. A ride of an hour, and we stood at the foot an immense snow field that sweeps around the south and west sides of the mountain, extending to the summit. Here we left our horses, and, after lashing ourselves together with a rope fifty feet in length, commenced our march directly toward the summit. As we proceeded, loose crags of rock kept dashing past us and plowing their way through the snow and ice toward the base of the mountain. A toilsome journey of an hour, and we stood on the edge of the crater, from which constantly rises steam and sulphurous vapor, at times making the air difficult to breathe. Here commences the peril of the ascent. We made our way toward the northeast on a narrow ridge of snow, sloping on the right to the foot of the mountain, and on the left into the crater On this ridge we traveled until we reached a chasm about 600 feet from the summit, varying in width from 5 to 50 feet, and of an unknown depth. Along this we proceeded to the east under a perpendicular wall of ice and snow, in search of a place to cross the chasm, which we found where a snow slide had made a bridge, upon which we crossed.
"The ascent from this point was difficult and dangerous. Instead of snow, we here found ice, making our steps uncertain. The lightness of the air and the burning rays of the sun made it difficult to proceed more than a few feel without rest. Inspired by hope and a determination to succeed, steps were multiplied and hight after hight gained, until ten min-
utes after eleven o'clock, and five hours after leaving camp, we stood on the summit.
"An attempt to describe the scene is useless. Those who would have an idea of the grandeur and feel the thrill of joy and wonder inspired by the map of nature opened before them, must contemplate the scene from that etherial region. From the mountains in the east the waters of the Columbia come coursing, apparently at our feet, and flow on until lost in the waves ol the Pacific. Far off the Coast Range seemed to rise against the sky. On the north Mounts Rainier, St. Helen and Adams stand like massy columns. On the south, and far beyond Mounts Jefferson the Three Sisters and Diamond Peak, the dense forests fade from sight orseem to blend
with the firmament beyond. Within a few feet of the summit, on a large rock, we found some papers deposited, and among them two copies of the Pacific Christian Advocate dated July 21, 1866, and others dated August 2, 1867. These with some buttons and small pieces of coin, were the only articles found. The papers were well preserved, having no appearance of being damp since deposited.
A cold wind blew from the east and was disagreeable, the mercury standing almost at zero. Water boiled at 180°, mak ing the hight of the mountain 17,600 feet, at a point 30 feet below the summit. Having completed our observations we began the descent, after being on the mountain one hour and fifteen minutes, and reached camp in two hours, thankfu that we had been permitted to stand on those isolated cliff and view a portion of the works of Him ' who doeth all thing well.' "

Improvement in Scissors Combined with Button. utter
The engraving gives a perspective view of a pair of ord nary scissors with a blade for cutting buttonholes. The sam rivet connects the two blades of the scissors proper and the buttonhole cutter, the edge of which passes by a piece inserted n one of the blades or impinges on the edge of portion of the back of the blade preparedfor the pur pose. This device is actu ted by the finger of the perator the end of the utting lever being form d into a bing in aroval as weight brings the blade back after being used, o nto a ring to be controlled by the finger. While this attachment does not interere with the ordinary use
of the scissors, yet the implement can be readily used to cut the buttonholes in any description of fabric. Its representation is so perfect that no difficulty will be experienced in understanding its construction or operation. It appears to b well adapted to the purposes for which it is intended.
A patent for this was obtained through the Scientific American Patent Agency, Oct. 8, 1867, by J. A. Althouse, of New Harmony, Ind, who will reply to all inquiries relative to the invention.

Sciemce fimiliarly yylustrated

Salts and other Foreign Matter in Water

Owing to its extensive solvent powers, water is never met with naturally in a state of purity. Rain water, collected after a long continuance of wet weather, approaches neares to it, but even that always contains atmospheric air, and the asesfloating in the air to the extent of about 21 cubicinche f air in 100 of water.
Spring water, although it may be perfectly transparent, al ways contains more or less of saline matter dissolved in it the nature of these salts will of course vary with the charac ter of the soil through which the water percolates. The most usual saline impurities are carbonate of calcium, com mon salt. sulphate of calcium, and sulphate and carbonate of magnesium. The waters of the New Red Sandstone are impregnated to a greater or less extent with sulphate of calci um. Most spring waters are charged with a notable propor tion of carbonic acid, which dissolves a considerable amount of carbonate of calcium ; the calcareous springs in the chalk districts around London contain from 18 to 20 grains of chalk per gallon, 6 or 8 grains of which become separated by expoure of the water to the atmosphere, so that a running stream vill seldom contain more than 12 or 14 grains gallon in solution. Waters which have filtered through a bed of chalk also often contain carbonate of sod siderable quantity, as is the case with the deep-well waters of London.
Mineral waters are impregnated with a large proportion of any one of the above named salts, or with some substance not so commonly met with; such waters are usually reputed to possess medicinal qualities, which vary with the nature of the salt in solution. Many of these springs are of a temperature considerably higher than that of the surface of the earth where they make their appearance. At Carlsbad and Aix-la Chapelle this temperature varies rrom 160° to 190°. Such hot springs either occur in the vicinity of volcanoes, in which case they generally abound in carbonic acid, as well as in common salt and other salts of sodium ; or they spring from reat depths in the rocks of the earliest geological periods nd contain chlorides of calcium and magnesium, and almost always traces of sulphureted hydrogen. (Berzelius.)
Many mineral waters containsalts of iron in solution,which impart to them an inky taste; they are then frequently termed chalybeate waters; some of the Cheltenham springs are of this kind. In other instances carbonic acid is very abundant giving the brisk effervescent character noticed in Seltzer water. Less frequently, as in the Harrowgate water, sulphureted hydrogen is the predominating ingredient, giving the nauseous taste and smell to such sulphureous waters. In ther instances the springs are merely saline, and contain purgative salts, like the springs at Epsom, which abound in sulphate of magnesium, and at Cheltenham, where common salt and sulphate of sodium are the predominant constitu

ALTHOUSE'S COMBINED SCISSORS AND BUTTONHOLE CUTTER.
nts. Many of these saline springs also contain small quan tities of iodine and bromine, which add greatly to their ther peutic activity.
River water is less fitted for drinking than ordinary spring water, although it often contains a smaller amount of salts for it usually holds in solution a much larger proportion of organic matter of vegetable origin, derived from the exten sive surface of country which has been drained by the stream If the sewerage of large towns, situated on the banks, be al owed to pass into the stream, it is of course less fit for domes ic use. Running water is, however, endowed with a self purifying power of the highest importancc; the continual exposure of fresh surfaces to the action of the atmosphere promotes the oxidation of the organic matter, and if the stream bs unpolluted by the influx of the sewerage of a large town, this process is fully adequate to preserve it in a whole some state. River water almost always requires filtration through sand before it is fit for domestic use ; and if wate works designed to supply such water be properly constructed provision is made for this filtration. Suspended matters, such as weeds, fish spawn, leaves, and finely divided silt or mud
are thus removed; but vegetablo coloring matter in solu cannot be arrested by such a filter
In the gradual percolation of water through the porous strata of the earth, many even of these soluble impurities ar emoved, particularly those of organic origin, partly by ad hesion to the surface of the filtering material, but chiefly by slow oxidation in the pores of the soil.
The magnetic oxide of iron, indeed, seems to exert a pecu liar influence in promoting the oxidation of organic matte contained in water which is allowed to percolate through it,
and it appears to be probable that this action, to which Mr. Spencer has particularly called attention, may furnish a val able auxiliary to the methods of filtration at present in use Filtration through beds of iron turnings has likewise been practiced in some cases with advantages of a similar descrip on, but the oxygen is in this case in great measure absorbed rom the water by the iron.
The presence of organic matter in water is easily ascer tained by the reducing influence which it exerts upon chlor de of silver or of gold, or upon permanganate of potassium when boiled with them. The chloride of silver becomes pur plish; and chloride of gold imparts a brown tint to the water under such circumstances, owing to the precipitation of met llic gold. A very dilute solution of permanganate of potas ium is rendered colorless, whilst a brown precipitate of hydrated peroxide of manganese is formed.
Water is familiarly spoken of as hard or soft, according to its action on soap. Those waters which contain compounds of calcium or magnesium occasion a curdling of the soap, as hese bodies produce with the fatty acid contained in the soap substance not soluble in water. Soft waters do not con ain these salts, and dissolve the soap without difficulty. Many hard waters become softer by boiling ; in such cases the carbonic acid is expelled, and the carbonate and part of the ulphate of calcium which were held in solution are deposited, nd cause a fur or incrustation upon the side of the boiler.
Sea water is largely impregnated with common salt, and with chloride of magnesium, to which it owes its saline biter taste. It might be supposed that the quantity of salts hich it contains is continually on the increase, as the sea the receptacle for all the fixed contents of the rivers disharged into the ocean, since pure water alone evapo rates from its surface; but here also there is a return to the surface of the soil provided for in the marine plants, the fish, and their representative guano, which are perpetually being raised from its depths by the force of storms, by predatory birds, and by the industry of man. The specific gravity of sea water is subject to trifling variations, according to the part of the globe from which it is taken. .The waters of the Baltic and of the Black Sea are less salt than the average, while those of the Mediterranean are more so. The waters of the Mediterranean in the Levant are more salt than those of the same sea near the Straits of Gibraltar. The mean pecific gravity of sea water is 1.027 , and the quantity of salts ranges from 3.5 to 4 per cent

Tyrian Purple.
The Tyrians were probably the only people of antiquity who made dyeing their chief occupation, and the staple of their commerce. The opulence of Tyre seems to have pro-
ceeded, in a great measure, from the sale of its rich and durable purple. It is unanimously asserted by all writers, that a Tyrian was the inventor of the purple dye, about 1.500
years before the birth of Christ, and that the King of Phœe cia was so captivated with the color, that he made purple one of his principal ornaments, and that, for many centuries after, Tyrian purple became a badge of royalty. So highly prized was this color, that in the time of Augustus, a pound of wool dyed Fith it, cost at Rome, a sum nearly equal to thirty pounds sterling. The Tyrian purple is now generally believed to have been derived from two different kinds of shell fish, described by Pliny under the names purpura and uccinum, and was extracted from a small vessel or sac in their throats to the amount of one drop from each animal ; but an inferior substance was obtained by crushing the whole substance of the buecinum. At first it is a colorless liquid, but by exposure to air and light it assumes successively a citron ellow, reen, azure, in the course of forty eight

 rin thing ith the in the ith the minute description of the manner of catching the purple dye fish given in the work of an eye witness, Eudocia Macrembolitissa, daughter of the Emperor Constantine the Eighth, who lived in the eleventh century. The color is re markable for its durability. Plutarch observes, in his life of Alexander, that, at the taking of Susa, the Greeks found, in the Royal treasury of Darius, a quantity of purple cloth, of the value of five thousand talents, which still retained its beauty, though it had lain there one hundred and ninety years. This color resists the action even of alkalies, and most acids.
Pliny states that the Tysians gave the flrst ground of their purple dye by the unprepared liquor of the purpura, and then improved or hightened it by the liquor of the buccinum. In this manner they prepared their double-dyed purple-purpura tibapha-which was so called, either because it was immersed dibapha-which was so called, either because it was immersed
in two different liquors, or because it was first dyed in the in two different liquors, or because
wool and then in the yarn.-Prof. Dussauce.

ALUMINUM---ITS PROPERTIES AND USES.

The discovery of this metal dates back only to 1827, when Ẅhler, a German chemist succeeded in extracting it from clay. It is a white metal, not like silver, but having a bluish tinge, Its specific gra rity is from $2 \cdot 5$ to $2 \cdot 67$ according to its purity. It is considerably lighter than flint glass, being, as seen above, only about two-and-a-half times heavier than water. Bulk for bulkitis four times as light as silver and a little more than quarter the weight of copper. It is nearly as hard as iron, but can be softened by annealing; has areat rigidity and tenacity; can be turnd, chased, and filed with號; case, never clogging the can be surpassed only by those from gold or silver.
For mustard and egg spoons it would be an excellent ma terial, as, unlike silver, it it not affected loy sulphureted hydrogen or other sulphureted compounds. It retains itsluster in the ordinary atmosphere and is not affected by boiling water, diluted sulphuric, or strong nitric acid, which attacks silver, but has no action upon aluminum when cold, and it is not affected when plunged into melted niter, potass, or sulphuret of potassium, a test which even gold or platinum cannot withstand. It is dissolved, however, in muriatic acid and has a powerfulattraction for chlorine
It has been used in France and England for ornamental purposes, as finger rings, brooches, chains, etc. A cup made of it, although very thin, was not indented by falling from the hand to the pavement. These peculiar properties would seem to make it a proper material for light field guns, cuirasses, helmets and coins, but for the cost of extracting it from its earthy base of argil or clay.
When the inventive genius of man has discovered a cheap and rapid process of extracting aluminum we may expect it to assume a much more important position in the useful, as well as the ornamental arts, than it occupies at present. A beautiful compound is now manufactured in France and England composed of aluminum 10 and copper 90 parts. We have seen a paper cutter, the blade and handle made of this, which had a beautiful yellow or deep straw color, was elastic, tough, and of a very fine finish. Its color is more grateful to the eye than gold and its luster brilliant. The earth metals, of which aluminum may be considered the head, will in time become as valuable for use as they are now for ornament or for the purposes of the chemist.
Is an Illustrated Description a Good Advertisement.
This question is most emphatically answered by the experience of the agent of the Hinkley Knitting Machine, Mr. G. E. Harding, who, since the illustration of the machine appeared in the Scientifio American-less than one week ago -has received orders for not less than 1,750 machines, which he states were obtained in consequence of that publication. Perhaps part of this success may be attributed to the undeniable excellence of the machine, but some of it is undoubtedly due to the influence of this paper.

Native Wines at the Exhibition
Speer \& Co., of Los Angelos, Cal., and 243 Broadway, New York city, exhibited at the Fair of the American Institute a fine collection of specimens of their Catawba, Port, and Sherry wines. Of undoubted purity, manufactured from California grapes, these wines were pronounced by judges fully equal, if not superior to those of authoritative genuineness which are imported under the same name.
"Thrre is Nothing like Leather."-The Shoe and Leather Roporter suggests that our government might with profit follow the example of the Walrussians in using a leathern currency, and thus find a valuable substitute for our present torn and defaced promises-to-pay.

