A. S. Lyman's patent accelerating rifle.

Fig. 1 is a longitudinal section of the breech of an accel rating hunting or target rifie.
Fig. 2 is a cross section through the accelerator
A is the initial charge chamber; C C is the accelerating chamber; S is the shot.
This rifie is loaded at the muzzle when standing nearly vertical. The powder first fills the center tube, A, which holds twenty grains, then runs over into the accelerating chamber, C C, which surrounds it, and is upward of ten times as large as the center or initial charge chamber. A wad, W , of leather (made by cutting a piece from sole or harness leather with a punch) is next pushed down upon the end of the initial charge chamber. This cuts off all connection beween it and the accelerating chamber. The barrel may the be wiped out if desirable, and the shot sent home.
The range of this little rifie but $\frac{8}{8}$ inch diameter of bore, and weighing, with its telescope, less than 15 pounds, using half an ounce of powder and one ounce shot $2 \frac{1}{4}$ inches or six calibers long, is 1,000 yards with $1^{\circ} 28^{\prime}$ elevation, and 1,300 yards with $1^{\circ} 58^{\prime}$ elevation. It will be seen that this is a greater range than is
obtained by any known cannon at the ame elevati any known cannon at the ase elevation except the Accelerator, and more than twice of the same caliber.
This great range and horizontality gives it a vast advantage for hunting and other purposes where the exact distance is ot known, as explained in descriptio

Improvement in Try-Squares.

In the use of the ordinary try-square for trueing up stock it is necessary either to stoop repeatedly in order to look under the blade of the square, or to raise the piece being operated upon to permit the light to show between the blade's edge and the work. Of course, this, if long continued, is a wearisome labor, especially if the piece being trued is heavy or bulky. The object of the improvement in the square shown in the engraving is to obviate this necessity by permitting the eye to note the progress of the work by a glance at the top of the blade. How this is effected may be seen by the following description : -A is the handle or stock of the trysquare and double, composed of two ler is hollow or double, composed of two longiuistance punning le a lie distance apart. Running lengthwise through the center of the space between these blades is a square bar, C, on which hang cross pieces, D , with a mortise in each sufficiently long to permit a slight vertical movement on the central bar. These drops are about one-sixteenth of an inch in width, made of steel, and fitting nicely one to another. The central bar permits these uprights to drop below the level of the lower edge of the blade but only flush with the top edge. Thus it will be seen that when the piece which is being planed becomes true, all those uprights which bear on its surface will be exactly level with the top edge of the blade. The block of wood, E , is purposely shown to be very uneven to exhibit the working of the square, a portion of one side of the blade and a part of the central bar being broken away to expose the parts.
This invention was made at the sug. IIFIC AMERICA want long experienced. For further particulars address Joh Burgum, Concord, N. H. Patent pending through this office.

A QUARTETTE OF MATHEMATICAL GYMNASTS

The errors which have lately been made in calculating the power of projectiles, the resistance of armor plates, and the force of steam vessels when used as rams, seem to indicat that a knowledge of first principles is more necessary for a correct appreciation of mechanical problems than any amount of abstract mathematical skill.
The scientific gentlemen whose errors on the subjects al luded to, it is intended at this time to point out, are Captai Noble; Professor Daniel Treadwell, late of Harvard Universi ty ; one of the Shoeyburyness scientific reporters, and Rea Admiral Louis M. Goldsborough, of the U. S. Navy.
The curious blunder of Captain Noble, of her Britannic Majesty's Service, the famous artillery calculator, in computing the dynamic force of the fifteen-inch shot, has a parallel, in point of inaccuracy, in a late error (which will presently be referred to) of another Shoeburyness mathematician in calculating the resistance of a certain iron-clad target, and also in the blunders committed by Professor Treadwell in his calculation on the fifteen-inch gun. Captain Noble, it will be remembered, made the following error in his calculation of the power of the fifteen-inch shot. Referring to page 30 of his report, the result of his calculations is stated as follows, viz.: That with a " 50 -pound charge and a 484 -pound shot an initial velocity of 1,070 feet per second will be the result." This is equivalent to a force represented by $8,658,760$ pounds raised one foot high, which divided by 50 gives only 173,175 footpounds as the energy exerted by each pound of powder.

BURGUM'S IMPROVED TRY-SQUARES.

has underrated the real power of the gun, it is only necessary to repeat that with a proper charge the gun impart n energy to its shot of no less than $17,145,310$ foot-pounds, as tested by more tha
gun, as before stated
In the same communication we find the following put down as the performance of the Armstrong wrought-iron coil gun: "Weight of shot 600 pounds," "charge of powder 100 pounds," "initial velocity 1,400 feet,", "force" of shot "in pounds raised one foot high, $18,375,000$." According to these statements a pound of powder in the 15 -inch only exerts a force of 123,039 foot-pounds, while the late Shoeburyness trials show that this piece actually exerts a force of 206,567 foot-pounds ; thus the Professor underrates the American gun to the enormous extent of 83,537 foot-pounds for each pound of powder employed, a degree of blundering quite inexcusale in one who undertakes to teach the American Academy of Arts and Sciences. The enormous friction of the rifle shot and the absence of friction in the 15 -inch shot, should have suggested to the Professor that his calculations must be erro neous.
Again, the 100 pounds which he puts as the charge in th Armstrong gun has only been used on one or two occasions 70 pounds was called the service charge, and even that ruined the gun in a very short time, and the last one tested burst a the sixth fire with but 70 pounds. In a word, the English themselves admit this gun to be a dead failure. But with this charge, i.e. 70 pounds, and a 511 -pound projectile, an initial velocity of only 1,250 is obtained; hence the force of the shot is equal to $12,500,000$ foot-pounds, or only 178,528 foot pounds against nearly 207,000 for the 15 -inch.
While Professor 'J'readwell has overstated the power of the
abortive 13•2-inch English wrought-iron coil gun, he has as we have shown understated the power of the American 15-inch cast-iron gun in the ratio of $6,051,950$ foot-pounds to 17,145 , 310 foot-pounds, that is, he has underestimated its capacity rearly three-fold!
In looking through Professor Treadwell's paper, an explanation which seems to account for these astounding blunders may be found in the fact that the document in question is intended as an argument in favor of the coil system of constructing cannon, his patent system. On this point it will be enough to say that the Armstrong coil system, which the Professor crowns with unearned laurels, is utterly unable to meet the strains put on heavy ordnance ; in short, it is a complete failure, and is so acknowledged in England by the fact of its abandonment for a simpler system. The Armstrong system is now admitted to befounded on erroneous mechanical principles.
Much more remains to be said on this point, but we pass on to the next candidate, the Shoeyburyness scientific reporter. And with respect to the blunder made by this official in his calculations on the resisting power of an iron target, we cannot do better than quote from the London Army and Navy Gazette of August 24th. The Gazette, after giving its views of the self-satisfied air of the Shoeyburyness ordnance and select committee men, says: "There is, we see by the pages of the leading journal, a recent and rather remarkable illustration of the utter fallaciousness of the calculations at Shoeburyness, which the scientific officers would have done better to have kept to themselves. It was considered desirable to test the power of the American system of laminated plates as compared with that of solid plates. One target was composed of a solid 7 -inch plate, one of two 3 -inch plates, and one of three $2 \underset{3}{ }$-inch plates, bolted together."
We are told that "the ratios of resistance under the ' em pirical rule' ought to have been 49, 24, and 16 respectively. The result was ludicrously at variance with the empirical The result was ludicrously at variance with the empirical
rule, and is represented in the proportion of 61,57 , and 52 rule, and is represented in the proportion of 61,57 , and 52
respectively." It is not likely that any comments can add to respectively." It is not likely that any con
the force of the teachings of such a result.
the force of the teachings of such a result.
The blunder to which we now call attention, in point of ignorance of principles, is entitled to cap the monument of blunders whose base and shaft is formed by the others which we have already mentioned. It is the extraordinary hallucination of no less a mathematician than Admiral Goldsborough with regard to the smashing or punching power of rams. The Admiral's fallacious reasoning deserves to be pointed out at the present time, from the fact that he still clings to an error which, if he has any conception of the subject, he must have seen long since.
In his report to the Secretary of the Navy in 1864, the Ad miral strongly advocates the employment of rams for the protection of harbors, unprovided with guns, which he says "are detrimental to unity of purpose." This view he attempts to sustain by the absurd statement that a ram weighing $10,080,000$ pounds, moving at the rate of 15 knots an hour or 25 feet per second, "is equal in point of shock" to a ball of iron weighing 252,000 pounds striking with a velocity of 1,000 feet per second. This ball is 10 feet $2 \frac{8}{4}$ inches in diameter. The striking force of the ram is measured by its equivalent of a little over $100,000,000$ of foot-pounds, while the striking force of the 10 feet $2 \frac{8}{4}$ inches ball is measured by no less than $3,906,000,000$ foot-pounds. In other words, the Admiral, by not understanding the fact that the comparative "shocks" of the impact of moving masses are measured, not directly as theirvelocities, but as the squares of their velocities, has committed the ludicrous blunder of exaggerating the power of his ram nearly forty fold.
The Admiral's ramming theories appear to have been conceived while he was in command of the naval force in Hampton Roads opposed to the Merrimac, and while that iron-clad was nightly haunting his dreams. The official delivery of these theories was formally announced with the ceremony due to a royal birth, in the report to the Secretary referred to. We have a few other mathematical acrobats on our list, but as their summersaults were turned on another stage, we will not mention them at the present time, but we hope before long to place them before the readers of the Scientific american. We will briefiy observe, however, that one of them is not a thousand miles from the Navy Department, and he is still, we believe, accumulating figures with extraordinary cunning and industry.

gLEANINGS FROM THE POLYTECHNIC ASSOCIATION.

The meetings of this Society were resumed, after the summer intermission, on Thursday evening, Sept. 19th. The attendance was small, and the exercises were of a somewhat miscellaneous character, being chiefiy confined to discussions and comments upon a budget of scientific items collected by the Chairman, Prof. Tillman, during the summer months.

facts concernin deafness.

Following the reading of a note upon the causes of deafdumbness Dr. Richardson remarked upon some prevalent but false notions, respecting the use of aids to hearing and to sight. Persons having but a slight impairment of their auditory apparatus, are loth to have recourse to speaking trumpets fearing that thereby permanent deafness will ensue. But this is a mistaken idea, for the use of this aid is in effect kind of invigorator, bringing the organs of hearing into full play, and thereby developing rather than paralyzing them. In supporting similar views in relation to the organs of hearing and sight, Dr. Richardson recounted the observations made by Dr, H. R. Smith, of Chicago, during a resent visit of scientific research to the Mammoth Cave. The fish of these subterranean lakes are not only without eyes or even traces of an orbit, but so far as he could ascertain by careful and
indefatigable investigation, are destitute of the sense of hearing ; these facts going to prove the truth that the functions of the auditory and optic nerves become impaired by the partial or total deprivation of their naturalstimuli, sound and light.
But on the other hand, excessive use of these nerves tends to their paralyzation. The case of three boiler makers of this city made permanently deaf by hearing incessant hammering, was mentioned ; also many cases of loss of hearing by artillery the noise made by brass cannon affected the aadi:ory nerves more painfully than that made by iron ordrance.

Concerning teeth.
A note upon late experiments, relative to the readiness of di gestion of varieties of food, brought up Mr. Fisher, who advocated the more thorough comminution of food on the score of health and economy. In the testimony of a late French sucan, who maintains that the superiority of an Indian's teeth, for example, is due to the fact that, from insufficient cooking of their food, they are obliged to make great use of them; of their food, they are obliged to make great use of them;
that the dentist's occupation was a sign and concomitant of that the dentist's occupation was a sign and concomitant of
exccssive civilization. The dentists present denied the exccssive civilization. The dentists present denied the
charge, affirming that rudimentary teeth of both sets were formed before the birth of the child ; that the mastication of focd in no way entered into the question, excepting, perhaps in the case of the mother; and that the Indian had better teeth simply because the constitution of the generality of their females was better than that of the civilized woman. Some other topics of minor note occupied the controver sial powers of the members during the remainder of the evening, and the Society adjourned at a late hour.

Rirhhols' Metal.

We see it stated in the papers that A. Birkhols, formerly of Colt's factory in Hartford, the inventor of a metallic com position resembling brass, for the manufacture of which a company has been formed in Providence, R. I., with a capital of $\$ 300,000$, has sold his patent to them for $\$ 40,000$ of th
stock, three cents duty on every pound manafactured, and stock, three cents duty on every pound manafactured
salary of $\$ 4,000$ for superintending the manufacture.
The following is a copy of the patent:-
Be it known that I, Alexander Birkhols, of the city and county of Hartford and state of Connecticut, have invented or discovered certain new and useful improvements in the
composition of cast metal, by means of which greater strength composition of cast metal, by means of which greater strength
is acquired, and I do hereby declare that the same is descrived is acquired, and I do hereby de
in the following specifications.
Eo as to enable a person skilled to maze the same, I will
therefore proceed to describe its component parts the essen thal ingredient of which is cast iron. To make one hundred pounds of this composition, I first take two pounds of cas iron, two ounces of charcoal, put into a crucible and heat to a white heat. I then add thereto sixty pounds of copper Heat till both are melted together, then
borax and thirty-cight pounds of zinc.
The mode of proceeding during the meiting is much the same as with all other metals melted in crucibles. When
melted it mar be poured into molds or bars suitable for the orge or rolling mill. Its strength is estimated to be eight housand pounds greater to the square inch than the best wrought
The proportion of parts may be varicd, which will only change proportionably the desired effect, viz., greater amount of strength and solidity; but I believe that the proportions about as described will be best for all practicable purposes. ceeding to produce my improved c
a person skilled to make the same.
What I claim, therefore, and do
What I claim, therefore, and desire te secure by letters composed of copper and zinc in about the proportion, substantially in the manner as described.

terander Birhhols.

The Uchatius Process.

Many of our readers will still recollect an interesting in vention made by M. Uchatius, an officer in the Austrian ser vice, and which was first brought under public notice at the Paris Exhibition of 1855 . It is a direct method of steel manu facture by mixing granulated cast iron and iron ore, in proper proportions, in a crucible, and by these means forming the
exact combination required for any given quality of steel. In 1856, at the same time when Mr. Bessemer's invention had been pronounced to be a failure, this process was at the hight of its renown, and experiments were made in France and in of its renown, and experiments were made in France and in
England on a more or less large scale, although not in any thing like commercial practice, to test its value. A company was formed in France, and, we believe, under the auspices of the Government, for the working of M. Uchatius's patents, and everything then believed to be necessary for steel manufacture on a large scale was provided. The causes of failure in this instance are now perfectly intelligible, since the ad vancement of what may be called the science of steel manu facture has, since that date, enabled us to judge of the importance and value of certain details which were then unknown or overlooked, and the absence of which caused the practical failure of a process which in principle was perfectly orrect, and would have in time become of considerable im portance, bad it not been surpassed by the progress of a stil more glorious and revolutionizing invention, viz., the Besse-
mer process. The Uchatius process, however, has been commer process. The Uchatius process, however, has been com-
mercially introduced at one place, and the steel works has continued its operations now for about ten years, and so far as can be judged from the excellent quality of its products, and from the continuance of this mode of manufacture with perfect success. The steel works referred to is at Wykmanshyttan, in Sweden. In 1862, this concern sent Uchatius steel to London, which was remarkable for its tenacity and uniformity of grain, and now in the Paris Exhibition we find the same
orks represented by another excellent collection of the Ucha manshyttan is used exclusively by the royal mint at Stockholm or dies of coining presses, polished rolls, and other similar articles requiring steel of great strength and closeness and uniformity of grain. The reason wly this process succeeded in Sweden and failed in France and in England is the same which made the Bessemer process first succeed in that country, viz., the purity of the Swedish ores. The ore employed for the Uchatius process at Wykmanshyttan is that of the Bisberg mines, which can be seen in its natural state at the Paris Exhibition, forming part of the large trophy of ironstone and ron erected in the Swedish machinery gallery. it ranks mong the pures and richest magnetic ores to be found any the same ore, probably mixed with iron containing mangan ese, if the original grauulated ion does not contain a suff ese, if the original gramulated inon does not contain a suffi-
cient dose of this latter metal, the U chatius steel is made. The roduction is not inconsiderable, and the article finas a mar et at Gefle, principally in the form of a bar steel of small dimensions, at a price of 30 s . to 35 s . per ewt. Uchatius' pro cess would have become a practical success in England, had it not been swept away by Mr. Bessemer's invention before it had time to establish itself in practice. The steel manufacurers of this country and the public at large have all reason entions, with the historical coise and had Bessemer fol lowed behind Uchatins, have been two revolutions to be passed through instead of the one which has taken place. We should have had to change from the old mode of steel conver sion to the Uchatius process, and ultimately again from tha to the Bessemer process.-Enyincering

Anixmal Grafts.

Plastic surgery recognizes life in a part and grafts one portion of the body on another, or replaces a portion of a nose or a finger when lopped off, and witnesses its continued growth. In lower animals this principle is more astonish ngly developed. Cut a polyp into a dozen pieces and each fragment will develope itself into an independent and perfect
type of the species. A French naturalist, M. Vulpian, cut off the tails of tadpoled, and saw them not only live but grow for en days, indifferent to all theories of nervous centers, di gestive apparatus, or circulatory systems. But the member hat seems to have the strongest dose of the "vital principle," is the tail of a rat. This is the very ideal of life, and here, if anywhere, we ought to locate the scat oí vitality. The following experiment was made by Mr. Bert. He dried a rat's ail under the bell of an air pump, and in immediate proxim ty to concentrated sulphuric acid, so as gradually to deprive glass tube for five days. At the end of this time he subjected it for a number of hours to a temperature of 98° Cent. in ove, and subscquently sealed it a second time in his tube our days more having elapsed, he united this tail by its cat
extremity, to the freshly cut stump of a living healthy rat and quietly awaited the result. His success was as complete s it was marvellous. It commenced to expand and perform he natural duties of a tail, and three months afterward he demonsurated by a second amputation, and a careful injection, hat it was furnished with proper vessels and was a living part of the second rat.
What rich lessons practical surgery may learn from such experiments, can be imagined. A careful anatomist has transplanted a fragment of bone from the skull of one rabbi to the skull of another, and found it form adhesions and re place the lost portion perfectly. A piece of periosteum take rom a rabbit twenty-four hours after death, grew and pro same species. Nerves also have been removed from one body to another with success, and some very singular results noticed where a portion of a motor was excised and supplied by a fragment of a sensory filament. The diseases to which grafted members are subject, after they have been exposed to
certain re-ngents, are also full of hints for the pathologist and certain re-ngents, are also full of hints for the
he physician.-Medical and Surgical Reporter.

MANUFACTURING, MINING, AND RAILROAD ITEMS.

The EastIndia telegraph is progressing through China
There is only about a quarter of the shipping tunnage building in Maine a mpared with last year
England uses 850 mil .
The efforts of the French Emperor to increase the extraction of coal i rance, have been so far successful that from $13,000,000$ to $14,000,000$ tuns will
robably be mined this year. Rather an insignificant amount compared with probably be mined this year. Rather an insig
the coal prouction of America or England.
The cities of Bombay and Singapore, India, have fortwo years past bee ghted with gas made from coal brought from Australia. This coal beside and a larger supply of coal may be stored without deterioration or danger rom heating.
The ties for the Kansas Pacific Railroal will cost a tollar each. The coal The Prussian King has acce
The Prussian King has accepted the present by Krupp of his monster gun
now in the Paris Exposition, and its ultimatedestination will be some coal battery.
A California paper says that the company engaged in taking out borax in y from the Borax Lake
Gold dust to the value of $\$ 800,000$, arrivea at St . Louis, from Montana, o
都
Maine claimed recently to possess the oldest locomotive in America. It
as broken up the other day at a Bangor machine shop. This locomotiv as the "Pioneer," a ten tun engine, and was one of the early machines
bullt in England by Stephenson, the Inventor of the locomotive. It was bilt at Newcastle-upon-Tyne, in 1835, and ran its first trip November ϵ, 1835 .

Diamonds have been found in the Cape colony, in the neighborhood of the Orange river, by some Ansterdam prospectors ; one of the gems is valued at , It appears from quarterly returus made by the various manufacturers of there were manuta
taread machines.
The first paper will built in the United States was erected at Roxborough, Pa
 er of paper manu acieries in tho Unied states was $\%$ the their totol noduc being valued at $\$ 21,216,802$. O these manufactories New Exgland had 2001; the Middle States $2 \pi 5$; the Western States 54 : the South 24 . The increase ince that year has beea very large.
The American Fisthook company of New Haven, Conn., turn out frcin: ch machine, one hund red filihooiss per minute.
The Boston Hartford and Erie railroad by the first of next month will have their road in operation to Mechaniessille, Ct., where a junction Fill be made
with the No:wich and Worcester railroacl.
The largest journal turbine wheel ever buill in the country, is being cout-
tructeci for the Fairmount water- works of Philadelphia. Its diameter is ructed for the Fairmount water- works of Philadelphia. Its diameter is
en feet three inches: weight, including gearing etc., about 2co,000 pounds. :ome of the Lowell cotton mills which have been slacking up for a dev some of the Lowell cotton milis which
coiths past, are again pushing business.
The amount of capital cxpended ou theSuez canal, last year was $\$ 10,600,000$. The estimated amount still required to be expended before the work will be completed, is said to be $\$ 20,600,600$.
For improving the navigation of the Mississippi river, Government has aur horized the construction of a canal seven and a half miles ia length, around he Keokuk rapius. 'The contiact for the removal of obstructions in the rap ds just aiove Rock fsland, bas bern a awarded, and among the novel means
or: rock excavaton, is an immensa drill weif hing over four tuns, which With a fall of thirty fect, it is reposted, plows into the solid rook more than
cour teet at a singie stroize. It would intercat us to be informed of the Nin a
four tect at a singice stroke. It would inturcsi us to be informed of the
structure of the rock where such extraordinary resultis could be attained. structure of the rock wherc sucin extraordinary results could be attained.
Work on the Maan:ssas Gap railway, is procressixg very rapidly abou Work on the Manassas Gap ralivay, is proaressixg very rapidly about
threeh und red inain:. being employed. The rails are now being laid between Fiedmont and Mar
of the Blue Ridge.
of the Blue Rid
The procuction de coal this year has not reached that of 1866 but the grea alling off in the demand for manufacturing purposes has caused a great re noncy, and it is predicted that manysmall companies formed during the past itwo or three years, must succumb to the general stagnation. The first sample
The contract for buildiags hie nombain section or the Pachic ranwas, som six hundred miles in lenthth, has been awarded to Mr. Galkes . .mes, who is
to receive therefor over \$4t, woc,000. Tis is the largest railwaycontractever to receive therefor ove
The Califor nia gold mines are said to be ylelding more freely than cver be
 ork taken from one clam of 100 acres, since March 1864. "It takes a mine to ork a mine "says an old Spanish proverb, and to open the miue under no
tice, took nine years of incessant labor, and an cnormous money. It has tour miles of sluices, three rods wide and three feet deep, in which is distributed three tuns of quicissliver to catch the gold. Tiie water sed in washing costs $855,000 \mathrm{n}$
xpended annually in blasting.
zetent amorian amd foreigat atants.

 isco, Cal.-This invention relates to a new machine to be attached to the or
dinary clipper or header, for the saving of grain, which is fallen or blowi dinary clipper or header, for the saving of grain, whioh is fallen or blowi Cabpionmonly termed " lodged grain.
Carpiage Sprive.-Thomas De Witt, Detroit, Mich.-This invention con
sist in the application of fixed studs to a carriage spring, composed or two sists in the application of fixed studs to a carriage spring, composed of two
parts connected together aud arranged in sucla a manuer that \& spring supe
. rior to the ordinary elliptic spring is obtained.
Lounges, Sofas, Bed Bertoms, Citairs, ex.c.-Casper Martino, Trenton, N.. - This invention has for its object to furnish a neat, conveuient, sccure,
and reliable means of sesuring coiled wire springs, in a position in lounges fas, chairs, bed bottoms, ete , aid for raising and lowering a movable part of such articles
Device for Hirching horses.--J. B. Thornton, Madison, Wis.-This in
vention relates to a device to be attached vention relates to a device to be attached to the inside e:xd of carriage whee
hubs by means of which, if the horse or horses hirnessed hubs by means of which, if the horse or horses harnessed in and to the car
riage be bitched to such device, upon any attempt to move forward the whee isturned sufficiently todraw in the rein, and thus to stop them ; while ifthe istarned sumeiently tod raw in the rein, and thus to stop them; while ifthey
nove backivard, thedevise is free to slip around the wheel hub, and no harm

Spade.-W. H. Miller, Erandenburg, Kentucky.-This invention consisis principally in a novel attachment of the handle for operating the tines cun-
stituting the rake, to tirow them into position for use as a rake or as a spade Railuoal Station indicaton.-George f . Lape, Summit, N. Y. - This in Railroas Station lidicator.-Georse \%. Lape, Summit, N. Y.-This in-
vention relates to a new and useful mode of constructing apparatus for indivention reates to a new and usefulmode of constructing apparatus for ind
cating to passengers in thic rallroad car the names of stations as they ap proach or passthem, inthe distance, between them and the termini of the proach
road.
Device for Mixing Fleids.-George Watkins, Brooklyn, N. Y.-This in vention relates to a new and improved device for mixing and agitating fluids,
andit consists in a novel means employed for operatingtherevolving beators whereiy the latter lave two motions, a rotary one on their own axis, and another in a circle, around the tub or receptacle in which the fluid to be
mixed is placed. Perkozeda Stesm Heater.-Lewis R. Wiggin, Farmington, N. H.-This other articles used for chemical and mectar,wax, giue, blacking, oil, and other articles used for chemical and mechanical purposes, consists of a
douvle bottomed tank or receptacle for the substance to be heated, and of a standard through which water is conveyed between the two bottoms, and rising into a steam generator, from the top of which passes a worm coiled in
the tank. A chimney passes throush the stcam the tank. A chimney passes throush the steam generator, at base whereof
a petroleum or kerosene lamp or other source of heat is placed. Swrierforsaw mill.-Titus Whitmore, Dubuque, fowa.-The ooject of this invention is to provide a device by which the lors may be set automaticaily to a circular mill saw tor manufucturigg lumber, and consists in providing an index plate made in the form of a disk with a cam, and a crauls lever located upon a shatt, for the purpose of tirowing of the set of the log to the Laddrr.--B. F. Turner, Bridgeton, N.J.-This invention consists in the application of hooks to one of the sections or lengths of the lader, whereby the uppermost section or lengil may be adjusted to reduce the length of the
whole ladder, as may ba recuired. The improvement furtner consists in the Whole ladder, as may ba required. The improvement fur ther consists in the slightly inclived position, without leaving it against any support. The improvement consists, lastly, in an adjustable or reversib e platform, whereby he device may be used as a slip ladder.
Sccering Knobs to the Arror of Lociss,-D. b. Cobb, Jersey City, N.J This invention relates to a new and improved means for securing knobs to he arbors of locks, whereby a very strong and durable connection of the
foresaid parts is obtainei, and one which admits of a very ornamental and

