grimitio Ammiran.

MUNN \& COMPANY, Editors and Proprietors.
NO. 37 PARK ROW (PARE BUILDING), NEW YORK.
o. D. MUNN. S. H. Wales. A. E. beach.
"The American News Company," A Azents, 121 Nassau street, New York
" The New York News Company,", 8 spruce street.
 for Mese moss. Trubner \& Co.,

VOL. XVII., No. 12....[New Series.]....Twenty-first Tear.
NEW YORK, SATURDAY, SEPTEMBER 21, 1867.

THF WATER SUPPLY OF LONDON-.-DECREASE OF RAI

 FALL, AND POLLUTION OF STREAMSThe constantly increasing demand of London for water produced by the yearly augmentation to the population and the extension of manufactures, together with the continually lessening summer flow of the Thames, is a source of grave apprehension to Parliament and the thinking portion of the British Metropolis. Not only is the rapidly increasing de mand, and the rapidly decreasing volume of water during the summer months, a source of uneasiness, but the pollution of the Thames and its tributaries by the modern system of sewage causes even greater solicitude. This sewage, the offspring as it is of the extension of population, is an evil, it seems,
which, while it cannot be prevented, is capable, by proper enwhich, while it cannot be prevented, is capable, by proper en-
gineering, of having its polluting influence so far ameliorated as to be comparatively innocuous.
This subject, of the London water supply, both with regard to maintaining a supply throughout the year adequate to meet the increasing demand as well as to correct the pollution of the streams-the sources of supply-by the contaminating effects of the sewage from the cities near their banks, has been the subject of a very valuable and interesting paper Arts.
It is explained, in the first place, that the decrease in the summer volume of flow of the Thames is caused by the fact "that the rain fall is getting positively, though gradually, less in quantity from the disafforesting of the woodland, the improved cultivation of the soil, and the drainge of land and districts ; that although by the drainage of land we gain
an increase of water in the winter season, we suffer a diminu an increase of water in the winter season, we suffer a diminu-
tion in summer." And with respect to the pollution of the tion in summer." And with respect to the pollution of the
streams, that "the sewage of towns is corrupting our rivers and streams in their transit through the country to th sea, proportionally as the sewage of towns extends and the summer flow of rivers becomes less." Thus, while the in crease of population and manufactures is rapidly increasin the sewage, the rivers into which this foul sewage is emptied are each summer becoming less and less in volume, and hence the pollution is increasing proportionally as these causes are augmented. This indeed is a state of affairs which we should be very loth to contemplate for our city of New York, and it is a matter which will tax the skill of the English Engineers to the utmost to render the sewage harmless and to maintain an adequate water supply for their metropolis throughout the year.
With respect to the diminution of the rain fall, the following table, prepared by Prof. Austed, and published in the Journal of the Royal Agricultural Society of England, is both interesting and instructive as illustrating the effects of the works of civilization on meteorological phenomena :

On this data Mr. Denton observes, "If we deduce that the ain fall is gradually declining, we cannot reject from con sideration the counterbalancing circumstance that land drainage, which is taking place all over the country, discharges into the rivers from the land a larger quantity of water than found its way to them before drainage, and more than is actually lost to the rivers by the lessened rain fall." And if the whole of the land which sheds its water into the Thames was wet land, there would be a constant gain in the volume of the
river by the extension of the drainage system, but as the wet lands form lout a small portion of this surface, and "the wa
ter of drainage issuing from our clay lands is not constant, it is, for the most part, discharged in the winter months, when both soil and air are frequently in a state of saturation, and whes vegetation is dormant, and ceases to flow in summer, when evaporation is active and the demands for vegetation can hardly be satisfied." Thus the drainage adds to the de-
rangement of the water supply, and the more the drainage is extended and improved, the more, proportionally, will this derangement increase, and "the floods of winter and the droughts of summer" will both increase.
Now there seems to be but one way that the great excess in winter-an excess sometimes so great as to cause serious floods-can be made to balance and supply the deficiency caused by the droughts of summer. This method is to store enough of the winter's surplus to supply the deficiency in summer, and this is the method recommended by Mr. Den ton. Of course storehouses for such vast quantities of wate means the construction of huge reservoirs, containing enough for two months, or thereabouts, metropolitan supply. This is a plan already being carried out in one of our largest east ern cities, by building a huge reservoir to be filled by the sur plus of the season of plenty, to be let into the mains when the lake, from which the supply is drawn, runs low. To show how much in excess the rain fall is over the wants of the pop ulation-that is, if it can be collected and made available, it has been calculated, that while the mean average rain fall of the Thames Basin is twenty-six inches, "it only requires three-fourths of an inch of the surplus of winter, from the whole water shed of the Thames, or one and one-half inche from one moiety of the water shed to satisfy the whole popu Mr with it." Or, to put the matter more practicall water for six months of the year, one-half an inch of rain falling on an acre of land, is sufficient to supply two person with thirty gallons each per diem for six months, and no winter passes by in which there does not run off to the sea without serving any useful purpose, in excess of the mean summer flow of the river, at least five times the quantity required to meet the supply of the metropolis in the dry times of the summer, when the river cannot fairly part with any portion of its volume; and this or any portion of it may be stored for compensation to the river if reservoirs were properly constructed for the purpose."
It would thus appear that the means necessary to be adopted o maintain an adequate water supply, as regards quantity are clearly pointed out, and it only remains to free the rive water from the pollution of the sewage, to have the supply amply sufficient both as regards quantity and quality. An normous volume of water is pumped out of the Thames daily ythe five water companies ; they extract from that rive ixty millions of gallons daily, which they have the power to ncrease to one hundred millions.
It is stated that the flow of the Thames-which should al ways, it is maintained, be kept at a standard flow of say 450 millions of gallons per diem, is often reduced in dry summer by the pumps of the water companies to 300 to 350 millions. With respect to neutralizing the polluting effects of the con tantly increasing sewage,theproblem appears to be much mor difficult than to store up an adequate supply of water as re gards quantity alone. As the summer flow is decreasing and the sewage is continually increasing, both the difficulties and ecessities of a correction of this growing evil are apparent. ruvers, by the land which they drain, and at the same time supply he population with pure water; but if the river is dirtie by impurities, one of these important objects is at once de eated. And the very small quantity of sewage necessary to render the water unfit for culinary purposes is quite remark able ; it is concluded that "as soon as sewage can be detected by chemical analysis to exist in an appreciable degree in the water we are called on to drink, it is a vital error to use it."
Now, of all the methods proposed for the abstraction of the mpurities fhe methods proposed for which scientific men regard as possible to be applied on a scale at all exten sive, and that is the distribution of the sewage over land And even this requires a surface and a proper subsoil, together with the right sort of vegetation to extract and assimilate sufficient of the impurities to render it safe to allow it to mi with water to be used for drinking purposes.
These conclusions, on this point, are thus briefly summed up in the paper alluded to :-
1st. That sewage run over a surface of land which has nei ther natural or artificial drainage to assist vegetation in re taining the deleterious elements, altogether fails to secur that degree of puritywhich will allow of its being discharge into rivers from whence may be taken water for drinking purposes, though the operation may serve to clarify and im prove its character sufficiently to allow of its being utilized in rivers for navigation and for many other riparian uses.
2d. That land artificially drained to a depth of a few feet, affords, if irrigated, only an imperfect means, in conjunction with vegetation, of separating from sewage its objeotionable lements.
3d. That when sewage can be lifted upon high and fertile grounds with a free and porous subsoil, which will admit of its penetration to a considerable depth after it has fed vege tation on the surface, a perfect means of purification may be attained.
The latter plan, which is the only one which thoroughly purifies the sewage,will in most cases require the use of steam engines, pumps, pumping stations, reservoirs, conduits, and ther engineering appliances, and a constant outlay for at endance and repairs. It is estimated that it will aunall feet high and a distance of five miles

The above remarks and extracts cannot fail to impress upon the reader the extraordinary degree of complication the uses and abuses of progress entail on such an absolutely essential matter as a proper supply of pure water. To maintain life, three wants must be supplied-air, water, and food. Formerly it was only the latter that demanded the sweat of one's brow; but now a supply of pure water not only demands the most skillful engineering talent, but also the expenditure of vast quantities of labor.

SPEED OF THE 15-INCH SHOT.

While Captain Noble and the British artillerists are speculating on the capacity of the 15 inch American castiron navy smooth-bore cannon, with a velocity of shot less than 1,200 feet per second, we on this side of the Atlantic are wondering why they do not indulge in a little mathematics with res pect to the effect of the $453-\mathrm{lb}$. ball at higher velocities. Ar they atraid to "penetrate" "r rack" or to produce a tremen dous "non-local effect" on their targets-the representatives of the strength of the British navy-even on paper?
Fifteen hundred feet is a common velocity with our 453-1b balls : it is given in the text book on ordnance used by the miltary schools all over the country, where the American idea s taught how to shoot.
And while Capt. Noble, the eminent ordnance mathematician of Her Majesty's service is astonishing his brethren and tickling the patentees of small-bore ordnance and the small bore members of Parliament, by his skill in holding the 15 nch ball down to a velocity of less than 1,200 feet per second, ith a harness of algebra, and the power "per circular inch" down to a certain number of "foot tuns," our farmer boys are using a school book which shows that the ball goes some 1,500 feet per second. That is, as the square of 1,170 is 1,368 , 300 , and the square of 1,500 is 2,250000 , about 63 per cen more vis viva than this mathematical gymnast thinks to be ossible.
The following extracts from Benton's text book on Ordnance speak for themselves and illustrate our meaning
The navy 15 -nnch trialgun was fired 900 times with charges varying from 35 to 70 lbs., mostly mortar or navy cannon
powder njury 250 times with charges varying feen fired willou mammoth powder-the same that was used in England in rials against the target. One hundred of these rounds wer ith 100 lbs . of powder and spherical projectiles of 450 lbs ach. 15 -inch gun No. 105 has likewise been fired as follows, No. of

mes fred.	Charge.	Weight of ball.	Velocity.
	60 lbs.	430 lbs.	1191 feet.
7	70 lbs.	431 lbs.	1278 feet.
3	80 lbs.	433 lbs.	1355 feet.
	90 lbs.	452 lbs.	1433 feet.
	100 lbs.	453 lbs.	1509 feet.

Now, ye artillerists of Shoeburyness, the next time you roject a 15 -inch ball against your 8 -inch solid slab backed by 8 inches of teak and a thin iron skin, or even against you much vaunted "Hercules" target, be sure and put plenty of powder behind it. We are not particular about the kind, no atter whether it is English, Dutch, French, or Japanese, onl make sure to put in sufficient to drive the ball at least 1,500 eet per second.
At the late trials with the 15 -inch at Shoeburyness, accord ng to the official statements published in the scientific jour als, it was demonstrated that 50 lbs. of the English powder was equal to 60 lbs. of the mammoth grain imported from America, hence, according to this ratio it will require $83 \frac{1}{2}$ lbs. of the Shoeburyness powder to equal 100 lbs . of the mam moth grain. So if it is the intention of the English trials to find out the real power of the gun, that is the charge which hould be employed; and in order that the trial may be com parative, the gun should be exactly the same distance from the target that it was on the trial already made
Waive your excessive delicacy just once ; do not be afraid of bursting the big cast-iron smooth-bore. But it is not so muc the success of this lump of cast iron that we are intereste n , as it is in the pleasure of witnessing the demolition of he absurd small-bore system on which you have wasted millions. The English ordnance engineer started with a loud blowing of trumpets years ago to build $13 \cdot 2$-inch wrought iron Armstrong rifles, but finding they were no go, these gun makers were driven to smaller calibers, hence the argument of their mathematicians to prove them to be the best.
We are willing to hazard the prediction that before long the British small-bore system of naval ordnance will ke a completely smashed, as the "reputation of Sir William G Armstrong, the whilom great " rifle engineer."
With respect to the character of the metal best adapted for projectiles for iron-clad warfare, it will not, we think, be de nied but that the invention-or discovery-of the advantage of chilled cast-iron shot for the penetration of armor, is a applicable and adds as much to the efficiency of smooth-bore rdnance as it does to the rifle.
Therefore, on the trials to which we have alluded, any ad vantage which the nine-inch rifle may have had over the big smooth-bore, owing to the peculiar character of the iron its shot was made of, or in the method of casting it, it is not a advantage in any way whatever due to the gun itself. And is quite clear that, in order to make a fair test, each gu hould be fired with the best projectile known, capable of be ing used in the gun. In other words, no advantage should be permitted of one gun over the other, except such advan ages as are due solely to the piece itself, such as strength caliber, and method of rifling.

PROGRESS OF THE PNEUMATIC RAILROAD.

The first practical example of the Pneumatic Railroad eve constructed in this country has just been completed by the constructed in this country has just been completed by the
Holske Machine Company, No. 528 Water street, and will
form one of the prominent features at the exhibition of the American Institute in this city, now just opening. The pneumatic tube is six feet in diameter, composed of fifteen thicknesses of wood veneers, wound and cemented one upon the other in alternate spirals. This makes a tube of remark able strength and rigidity, although the total thickness of wood is only an inch and a quarter. This tube is made un der J. K. Mayo's patent. The blowing apparatus consists of a wheel 10 feet in diameter, made on the principle of a screw propeller. The pneumatic car consists of an open vehicle with a valve or disk at one end, which fits the tube. The car seats twelve passengers. The tube is over 100 feet long. Messrs. Holske have also built a Pneumatic Postal Dispatch for the exhibition. It consists of a pneumatic tube 24 feet in length and two feet square, having a lamp-post letterbox arrangement upon it, and a pneumatic car within. The construction is such that when the car, which is driven by air pressure, passes through the tube, it collects the letters from the lamp-post. The intention is to lay down these tubes through the city for the speedy collection and delivery of postal matter
The above railroad and postal devices are made from designs by Mr. A. E. Beach, of the Scientific American, and their practical operation will be more fully described hereafter.

English Patents.

The Lord Chancellor, the Master of the Rolls, and the late and the present Attorney-General (the latter then SolicitorGeneral), as commissioners of patents, report that 2,124 patents were passed in the year 1866. The amount received in the year for stamp duties, the fees being now paid by means expenditure of the department, though this must have been upon a liberal scale, if we may judge from the first item, $£ 9,428$, paid in fees to the Attorney-General and the SolicitorGeneral, and $£ 856$ to their clerks. The receipts included $£ 31,400$ for continuing old patents beyond the first three years of their term of fourteen years, and $£ 21,900$ for contin uing old patents beyond the first seven years of their term. The fee of $£ 50$ for continuing a patent beyond its third year is paid on alout 30 per cent. of the patents issued, and the other 70 per cent. become void at the end of three years. The further sum of $£ 100$, payable at the end of the seventh year is paid on about 10 per cent. of the patents issued, so that 90 per cent. are allowed to become void at the end of the seventh year.

Chloro-lodized Collodion.

A friend of ours is working entirely, both in the gallery and the field, with chloro-iodized collodion : the results are excellent; we are inclined to believe they are better than can be obtained with a bromo-iodized collodion. Our own experience with a similar collodion is equally satisfactory; we get more detail and better work in general with the chloro-iodized than with the bromo-iodized collodion.

Formula.-Alcohol, 4 ounces ; ether, 4 ounces ; pyroxyline, 48 grains (more or less); iodide of ammonium, 40 grains chloride of ammonium or magnesium, 8 grains.
Chloride of magnesium is more easily soluble in alcohol and ether, and therefore preferable. Our friend has 24 grains of chloride of ammonium in this quantity of collodion, but we are certain so much will not dissolve.-Humphrey's Jour nal.

OFFICIAL REPORT OF
 Patents and (ilams

Issued by the United States Patent Office,
for the week ending september 3, 1867.
Reported Oftctally for the Sctentiftic American
fatents are granted for seventeen fears the following
On flling each Caveat

On application for Reissue.
On application for Extension of
On ratent.
 In addition to which there are some small revenue-stamp taxes. Resident ot Canada and Nova Scotia pay 8500 on application.
Qङ Pamphlets containing the Patent Laws and full particulars of the mode
of applying for Letters Patent, specifying siseof modelrequired, and much of applying for Letters Patent, specifying sise of modelrequired, and much
ot her information use ful to Inventors, may be had gratis baddressing MUNN \& $\mathrm{CO}, \mathrm{P} u$ blitherafthe Scientifc American, Newo York:

68,334.-Door Lock.-E. Allen and J. Brady, Norwich, Ct

 68, Jr., Provincetown, Mass.

 1at, Iclaim the construction of the chamber, having inclated and horizontal
portions on the interior faces of the cyllnder heads, as and for the purposes
derscribed.

68,338.-KEY For Locks.-A. G. Batchelder, Lowell, Mass

 hoding box while being operated upon.
68,341. Mich.
I Claim an improved fastening device consisting of a clamping plate made
concave or with an upturned edge, combined by mea no of a central independentscrew, with an opposite plate of smaller dianeter or demension, the
whole arrange and
poseherein set torth. 68,342 .-M Machive For
Bente, Brooklyn, N. F.

 68,343.-STRAW SCATTERER. - Montgomery Blair, Barry, Ill. I claim the foregong described machine mititits combination of pulleys,
rollers, andrevolvarg rakes, and stop rakes, all moved I means of bands and
pulley attached to common wagon. pulley attached to common wagons.
68,344 . MANUFACTURE OF Allagheny City, Pa. hise of Hose.-Glaucus H. Bonnafon,
claim strenthening hose or belting by plates or straps of metal, or other

68,3646.-Machine for Removing the Seed from Broom
 forthand for the purpose specifed.
68,347 . RAILWAY CAR SEAT.-Justus A. Brown, Bath, Me

 68,348.-Hose Covplivg.-John R. Buchanan, Chicago, Ill.
 68,349.-BUOY SAFE.-F. O. Buisson, Nantiat, F rance.
(cartaiment provideate composed ot a metallic buoy made up of separate com. asspecifled. Apparatus for Testing Deerp Wells.-T. Burr
and 7 . Wakelee, Battle Creek, Mich.

 68,352.- GRAN Fork. Fort Abram Clow (assignor to himself

 scribed, openings or
ward
sartin combination with double gashes, one or more ventilating tubes in
sertion therein and pro pided with a valve,

 nation with the uiphly hopper, as and for che purposes set torth.

 branch pipes.
68,359. Amalgamator.-H. A. Gaston, Nevada City, Cal.
ist, 1 claim the dies, E, in thebottom ofthe pan, constructed and operating

described. Method of Holding Whips.-John Gibson, Jr.
Al
Albany, N. Y. Finstructing whips with a hollow butt or handle end, for the

standard, c for holding the whip, substantially as see forth and deacrited.
68,366 . Bot
ton, Mass.
ton, Mass. buttoner substantially as described, consisting of a continuous
cllim a
op, enlarged at Co for the prorpose of recelving the button, and narrowed at
to snit the eye of the button. dito sant the eye of the batton.
68,362.-DRILING MACHINE.-Wm. D. Grimshaw, Newark,
 2d, Icla 1 m the pulleys, drand s, arranged as set forth, in combination
with ithe
speill 68,363.-Preparing and Treating Vegetable Fibers.-

fibrous matter, by means of the beating or rag engine or its mecnamcal
equavalent, when such bamboo or other tbrous matter has not been reauced
 alkalne soution. Hiem.-John Hubbell, Buffalo, N. Y. Ante-
$68,364 .-$ Boot

 Ist. I clatm in a range or sotove provided with an elevated oven, a descend.
ing ing in ther portion of the range, for the purpose and sub-
stant

 I claim the manufacture of drying oils having a body adapted to paint, ©c,.
of the acid reaction in the manner specified.
68,368 .-CAR SEATS AND CovCHEs.--Isaac W. Lamb, Salem, Michigan Ithe backs, B, hinged to the eseats and connected by rods to upper
movable berthe constructed and arrang ed as described.

 b, b', , claim the theuper couches, D, D', attaclued to the seat backs by long
and short rods, all constructed andarranged as described and for the purpose

 Iclaim a horse collar, the bearing surface of whichis made of rubber com.
Boupde when he edges on fuchiber are retnorced to enable the rubber to
 scribed.-Paper STOck.-Heman S. Lucas, Chester, Mass. I claim the application of the fibress of the stalks and leaves, of the plant
Spartina Juncea, (or low Rush Salt Grass,) to the manufacture of paper
stock. 68,3iaim the cams. G, shaft, D. and puliess, H, as arranged in combination
 I claim the rotary stanchion, as well as its arrangement and combination
with holding trame or its equivalent, the whole being substantiall as de-
scribed
68,373.-Sofa Bedstead.-Chas. F. Martine, Boston, Mass. 1st, I claim the spring catch, a. and pin, e, in the stationary section, D, and
the notched opening fin the hinged eection, C, ot the arm for securing said
 simultaneously, substantially as specified.
68,374.-MACHINE FOR STRRING STARCH.-Purdy Mason
and James W . Brant, Oswego, N. \mathbf{Y}. and James W. Brant, Oswego, N. Y.
s.t. We clasm the etank, A,withits glass stave or window, as and for the
purpose
2d, The uforthe of the adjustable gates, G.G, with their weights and cords for
 purpose specifled.
 as that all jointa in the elatter above its average water level may be dispensed
with a sher in
2 id,

 tatar or agitators within the condenser.
68,376 . Gates. - Isaac H. McO mber, El Paso, Ill. I, constructedand arranged to operate, as and for the parpose se st and spring, 68,377.-STEAMM ENGINE.-Cyrus H. Merrick, Pittsburg, Pa. reciprocating engine as to open a communication for exhaust steam between
the to ndo onthe cylinder an orabouthe the when the live steam is ont
off and berore the completion of either stroke. substantilly as and for the

 flow of stream, in order to balance the piston,.substantally in themannerand
for the puroses herenber ore forth
68,378 .-WAsHING MACHNNE.- Wewis Merrifield, Lagrange

purposes oonsisting of a cap or frown piece, web. fin nge and gutter con-

 in se, f8orth. Condenser.-Frederick Ortlieb,Williamsbarg, N. Y. 1st, I claim the outer siphonic pipe through which tie water from the con-
denser fowi for exracting the alir and agees from the team condensing
gorth. through a pipe or pipes communicating therewith essentially as set
fort
 68,383.-LINING IN SToves.-Austin Packard, Brooklyn, N.Y.
 68,384.-Canning Fruit.-C. J. Paine, Young America, Ill.

