
MUNF \& COMPANY, Editors and Proprietors.
no. 37 PARE ROW (PARIK BUTLDING), NEW York.
o. d. munn, s. h. waleb. a. e. beach.

VOL. XVI., No. 9.... [New Series.]Twenty-first Year. NEW YORK, SATURDAY, MARCH $2,1867$.

We have a very large number of valuable communications from correspondents who have acted upon our suggestion to write upon practical subjects for our columns. We shall publish them as rapidly as possible. In this connection we wish again to thank our readers for the great interest which they have taken in promoting the circulation of our paper. The subscriptions are still coming in very rapidly and we are now printing 35,000 copies per week.

the south american mediterraneain

Professor Agassiz, in his second lecture (Feb. 11) forgot or deferred the sequel of the interesting geological history of the continent, and devoted the evening to the history of his expedition and the present terraqueous topography of the valley; with both of which our readers are already somewhat ac quainted. Certain points, however, struck us with a significance not brought out in former reports, and we shall there fore take occasion to review the ground in a few words.
The valley of the Amazon is no valley to the eye: its bounds are far too distant to be visible at any point in more than one direction if at all, and its slopes are altogetherin appreciable by the senses. Even the current of its waters is imperceptible, and sometimes locally reversed; so that it presents sea with a long, low, distant shore. On either side the tributaries have a similar appearance: they are themthe tributaries have a similar appearance: they are them-
selves so enormous that the eye cannot span their breadth: for example, there are four rivers descending from the Guianas on the north, east of the Rio Negro, hardly notice on our common maps by name, yet of a wonderful size, one or
them being no less than thirty miles wide at the mouth. Not to speak of the "great" affluents, the Xingu presents at its junction with the main river a front of forty miles broad and the Tocantins, of sixty; and of all of them, it must be
remembered that you ascend from the junction from a hunremembered that you ascend from the junction from a hun
dred and fifty to hundreds of miles before any appearance o rising ground, rocks or minerals can be found. The front or the united rivers, with their nearly oceanic depth, at one of the final outlets, is 150 miles across, and its yellowish white hue (like coffee and milk) tinges the ocean far out of sight of land.
Nor is the Amazon, when you have imagined its to the eye shoreless breadth, to be conceived as a simple stream or belt of water. It is a water system, prevading the country with unnumbered channels and branches for hundreds of miles in breadth. Independently of the usual obstructions and partings of streams, this system has a structure peculiar to itself, resulting from remarkable causes. The swelling of the waters will amount to from thirty to fifty feet, every rainy season, and the remarkable fact is that this takes place from two opposite quarters, the north and the south, not at the same time, but alternately.
The snows of the Andes melt in August and September, and reach the Amazon by October or November. The rains also begin on the south side in September, and the swelling of the southern tributaries pours into the great bed about the last of November. Both inundations continue with increasing volume until March, when the entire sea rises sometimes at the rate of a foot in twenty-four hours. At the same time, the tributary rivers from the north are at their lowest stage; and bearing in mind the fact that the fall of their channels for a long distance hardly exceeds that of the Amazon, or ten feet in a hundred miles, it is evident that a rise of thirty to fifty feet in the main river must not only send a vast back water up the northern tributaries for
hundreds of miles, but must follow the depressions of the hundreds of miles, but must follow the depresslons of the
ground in every direction, and create a network of innumerground in every di

At the hight of the southern freshet in March, the rains begin on the north. As the southern rivers subside, the northern rivers swell, and come down in full flood about June,
to gorge in turn the channels of their southern rivals, and to press the sath of their sold its basin in the summer, as it rose upon the northern side in winter. Thus the water system we are describing resembles an ocean not only in extent and evenness of surface, but also in its (semiannual) tides.
The result is that all the roads in this wonderful country are ready made. They are water roads, or ship canals, on the grandest scale of nature, through which the united navies of the world might steam or sail in company, for 2,000 miles from east to west and 500 miles on each side, or 1,000 miles from north to south; freely penetrating every portion of the country through the profusion of cross courses by which the rivers, swollen on both sides as we have seen, twice a year, have overflowed and run into each other, and in short have divided up the whole land into islands. Taking this into view with the fuct that nearly all the principal countries of
South America-Brazil, Peru, Bolivia, Ecuador, New Granada, Venezuela-have their main drainage and the best portion of their domain either in this valley or in navigable connection with it ; the-importance and the justice of the late decree of the Emperor of Brazil, opening the Mediterranean of South America as a free highway for all nations, are seen at once in a conspicuous light. The Amazon by nature belongs to South America and mankind.
The treasures of commerce to be directly drawn from nature here, have already been brought in a general way to the notice of our readers. We may add to the 300 kinds of choice timber, remarkable for thsir density and leauty of grain, which cover the entire country with dense forest, an endless variety of strong and light textiles, a variety of fruits of the myrtle family, as numerous and as fine as that of the rose family that embraces all the choice kinds of our northern climate, another family akin to the magnolia, embracing also a great variety of luscious fruits, and still another family of which the character was not defined, quantities of indigenous cotton, probably th3 greatest on the globe, the material of chocolate, caoutchouc, Brazil nuts, etc., in inexhaustible profusion everywhere, and finally the grand staples, drugs and dyes of the richest character and variety. Settlers would have nothing to do but to gather these stores from gorged nature in a perpetual harvest, and commerce, nothing but load cargoes of treasure almost directly from the ground on it is never apparent where the land ends and the water be it is never apparent where the land ends and the water be
gins, and the latter is often concealed completely by a prairie gins, and the latter is often concealed con
of rank vegetation and gorgeous flowers.
But there are not now 250,000 people in all this new world and the bad reputation of the climate, which the learned pro fessor stoutly combats-declaring it, from ten months' trial, most delightful and salubrious-is imputed to the unanimous hue and cry of the officials exiled from time to tims to those wild though luxuriant solitudes, whose natural discontent has attributed to them every deadly evil that imagination can conceive. Of the temperature and other interesting matter of this lecture, we need not repeat what we have heretofore republished.

THE GLACIAL THEORY AND THE TROPICAL GLACIERS

Professor Agassiz' third lecture in New York was a care ful elucidation of the Glacial Theory, which he enjoys the honor of having developed and established; proving that a period of a much lower mean temperature than at presen must have once existed in the now temperate and torrid por-
tions of the plobe when that peculiar "current" known as tions of the globe, when that peculiar "current" known as tinents, and performed an important part in preparing them for the habitation of man.
The first question is, What is the glacier? We have styled it a current, and such it is, as much as any that exists in the liquid form of the same element, governed in part by the same laws, but performing offices for which water is not adapted. Its law is motion under the influence of heat, in the direction of increasing temperature. Its formation is from snow, at such elevation as under existing thermal conditions permits an average temperature as low as 32°; but the com arative warmth of a lower elevation or of a warmer latituda usually assists. By this means the snow is alternately softened in part to suspended water, and conglomerated by the freezing of the suspended water, until it forms a granulated
Its law of motion is in substance the simple fact that wa ter expands in freezing. When formed on a mountain side a a proper elevation for the required temperature-and equally when formed on a level, at the right latitude-the glacier is constantly expanding by the expansive congelation of sus pended water or rains; and finding little resistance at its lower limit (of altitude or latitude as the case may be) but being more powerfully resisted in the direction of greater cold and igidity, its horizontal expansion of course pushes in the former direction. In other words, it moves on ward, by a simple and will continue in the direction of warmer temperature not warm enough to melt and destroy it entirely. It is evident that the loose angular rocks constantly crum bled off in the path of the glacier must be carried or rolled long under it, and often embraced and frozen into it, in grea
numbers. Again, the great transparency of ice to heat mits the sun's rays to pass through to the rocks beneath and within and comparatively to warm them. Thus the rocks rolled along under and those carried within the glacier co-
aperate in thinning by their comnaatity wramth the ice that
separates them, while the grinding movement of the glacier also tends to break it, and thus the rocks practically attract each other, accumulate, and are passed onward until some obstruction arrests them or some cavity receives them. Not to particularize and explain here the very distinct and characteristic arrangement of these accumulations in the Alps, where the active process may be now observed, it will be evident to the reader that some of their peculiarities must be recognizable wherever the glacial drift has passed along, in the disposition of the fragments and in the effect of their tremendous attrition upon themselves and upon the surface of the underlying rock.
The first suggestion of the glacial theory was due to the discovery from the kind of traces above referred to, that the glaciers of the Alps had once pushed out not less than twen-ty-five miles from their present habitat and extended their flow across the plain of Switzerland until they abutted upon the Jura. The same traces also gave proof that (as might in deed be presumed) they were then some 5,000 feet thicker than now. The inference was imperative, that a glacial temperature then prevailed at the moderate elevation of the plain of Switzerland, and hence must have prevailed in other parts of the world similarly conditioned. This led to examinations everywhere for traces of the glacial drift, and it needs only to be added that they have everywhere been found abundant. In the British Islands, in all parts of North America, and more lately in South America, near the equator,-here commencing on the Andes and moving across the continent eastward, far into the present domain of the ocean-the polished, scratcher and furrowed surface of the rock, its grooves always running north and south, (except where the declivity of mountains had changed the direction) and the "drift" of rugged but tamed and abraded fragments, show the unmistakable action of those " mills fo God " once built to grind the face of the earth smooth and pulverize materials ior the plastic hand of Nature -now dissolved long since by the breath that built them having served their end.

LETTER TO MECHANICS AND INVENTORS.

We notice in one of our Michigan exchanges that a stock ssociation is about organizing in Detroit with a capital o $\$ 20,000$, which is to be employed in defraying expenses of getting up models, obtaining patents, and for establishing agencies for the sale of patents throughout the country. The par value of the stock is fixed at $\$ 25$, and persons becoming members are required to pay one dollar initiation fee, and a further fee of fifty cents per month, making a total tax of seven dollars which entitles him to a share of stock.
We presume that the parties to this organization are all respectable gentlemen, but it is evident that they are engaged in a business which they do not understand. Efforts have been repaatedly made in this country to organize similar associations and every time the attempt has been made it has failed. Protective or joint stock societies of this kind have also frequently started up in England and though backed by big names, failure has always been the result.
Inventors very naturally and very properly distrust a association that undertakes the double business of procuring and selling patents. The two operations cannot be succese fully conducted jointly without causing suspicion. Some in ventions will inevitably receive much more attention than others, and it is wholly impracticable to keep a stock of patents on hand for sale like merchandise. The very ide will suggest an absurdity to any practical mind. If the as sociation should chance to get hold of one good invention which promised success they would be quite likely to employ heir whole force of salesmen to push it forward in ever direction, and thus less important and less easily-managed inventions would have to be suspended.
A member paying seven dollars for his certificate may never have occasion to employ the services of the association. But suppose he does seek their services, what pecuniary ad vantage does he gain? Nothing more than the facilities possessed by the association and for which of course he must pay extra charges.
We do not object to this scheme as a speculative enterprise but we do not perceive that it possesses the merit of novelty or is likely to afford any advantage to either mechanic or inventor.

WHEN AND WHERE DOES THE DAY BEGIN

As we travel eastward the day begins earlier: near the equator starlight appears an hour earlier for each thousand miles going east. When it is sunrise in New York, the people of Europe have had sunlight for many huors, and the Californians are still in their beds dreaming. Evidently the day has a first begining, and at the eastward. But how far and where? What are the people who first see the light of Monday morning?
It is the sun which brings the day; where does he first bring Monday? If we could travel with him we might find out. Let us suppose the case. We will take an early start : at sunrise on Sunday morning, with the sun just at the point of peeping over the horizon behind us, we travel westward. As we go, the people give us a Sunday greeting ; we bring Sunday with us to Pittsburgh, St. Louis, Salt Lake, Sinncisco. At San Francisco, our faithful chronometer informs us started on Sunday morning and it is Sunday morning still We go on, still on Sunday morning. Will this Sunday morn, ing ever end? The quiet Pacific knows very little of Sunday or any other day, and our question ecarcely receives an echo for reply. When we get to Yokohama in Japan, or Shanghai in Chind, wo search for some Yankee, wide a walee in the ear-
Iv moming. ami we sre toll for the fret time that Wrandey
las come. Everywhere now we bring Monday, and in twen ty-four hours by the chronometer after starting, we are in New York again, and find the merchants taking down their shutters, and the Monday newspapers telling us what has happened during our absence.

the right to free highways.

Why is it that in all the bills and bids we hear of for the construction of railroads or bridges in, above or under our streets and rivers, and among all the proposals or de mands of compensation to the public for these ucrative pub profits shall lee applied to the cheapening of fares for the million? Why is it that projectors propose to pay license fees into the public treasury or to divide their profits with fees into the pun interests already provided for and with the school fund-interests already provided for and sure to be sustained-but slirink from the business-like and bene-
ficent plan of reducing their fares and enlarging their traffic ficent plan of reducing their fares and enlarging their traffic progressively, to any extent which will still yield lucrativ returns.
Time is more than money : it is life : and rapid and cheap locomotion is life and money in a double sense, to the industrious and especially the industrious poor. They cannot always afford to pay twenty cents an hour for life; but it might and ought to be afforded them, though the medium of cheap and rapid locomotion, at five or ten cents an hour with the blessings of pure air and moderate rents beside The legislature which will provide for a system of rapid con veyance to and from and throughout this city and it suburbs, with a steady compulscry reduction of fares as fas and as far as consistent with a liberal but not inordinate profit and with due regard to safety and comfort, will do an amoun of good and earn a grateful remembrance not often open to any body of men in the course of a century. Such a system, we believe, would speedily reduce all city fares to three cents and all fares from the city to the remoter suburbs to six cents; while the improvements in economy of propulsion yet before us in t'ee future may ultimately make one cent each a profitable fare for the daily moving millions of the city that is to be.
There can be no doubt that, on sound principles of political economy and philosophy, all private property in public highways ought eventually to be extinguished, and the use of them for public or private traffic thrown open on equal terms to all, taxed only with an equitable proportion of the cost of maintenance, in the same manner as common roads. The proper aim of a public work is not profit for a few, nor even wealth and honor to the whole, but to economize the time, strength and means of every individual: for of the gains of individuals all public wealth all its. In the infancy of our country, the rewres all its individuals were organized or incorporated in som sort for making the roads, bridges and other public work esteemed indispensable, and these became at once common property and free to all. A continuance of the same principle of action would have made the railroads, canals, bridges and colleges as free as the common roads and the common schools. In an ídeal republic of good men, devoted to public rather than private good, this would be possible and incalculably profitable. But in a republic of men as they are, selfish, and only forced into union of interests and resources by extreme necessity, nearly all progress in public works and institutions is necessarily left dependent on selfishness, and in order to have better roads, bridges, etc., it is necessary to allow certain individuals enormous profit and wealth as an induce ment to build them. Nevertheless an eventual return to the primitive ideal of free common wealth in all that is in its nature common to all, should be persistently kept in view There is a proper and a practicable limit to all these public grants, which will be strictly insisted on by every legislato who is at all qualified by sense and honesty for his trust The profit of the road company is to be regarded only as means to the true end, public accommodation and economy and is to be used only so far as necessary to attain that end; not carried so far as to interfere with it.
The present tendency toward a reabsorption of railroad telegraph and bridge property by the public and for public benefit, through the agency of Government, is a hint which may yet become an assertion of the principle embodied in the limitations of every charter, thatall such grants are but temporary concessions, for the ultimate benefit of the commonwealth and that when they have served their purpose and repaid their not prepared to say that the resumption of these grants by Government, especially with its present corrupt and wasteful character, would be an improvement. Nor does it matte character, would be an impro wat any one may affected by theory and advice. There is one direction, how ever, in which we think we can discern a practical drift in the nature of things; and it is illustrated in the peculiar principle of the proposal on foot for a railroad from the Missouri river to Texas, to be open to all parties for their own care and locomotives, by payment of tolls, in the same manner as canals usually are. There are reasons enough why railroads should eventually go the way that most turnpikes have already gone, becoming first toll roads, and eventually in a distant future of greater common knowledge and wealth free public roads. Monopolies are at best necessary evile and that temporarily, and their manifest destiny in erests the whole, sooner or later, after they have served their temporary purpose

In regard to the internal highways of a metropolis like this, we may assert as an axiom that there is no mere reason
for making the rails, tunnels and buidges private property han for providing the pavements, sidewalke, street crossings amps, sewers, Croton water, public parks, etc. etc., on th ame principle. The evils of the private property system as applied to this class of public works (to which may be added the gas service) are such as the community literally groan under, without a hope of remedy. On the other hand, the beneficent success of the system of public works under which the Croton Aqueduct and Central Park were constructed is a standing refutation of all arguments against the exten ion of such a system to the construction of a complete and atisfactory network of free public ways beneath or above ou present crowded thoroughfares and rivers, and the equitable resumption of the much-abused privileges of all our city rai road and ferry companies. We invoke the attention of the egislature to some statesman-like and far-reaching measure of emocratic progress; for which the people can afford to wai little in preference to riveting tighter the bonds of th resent undemocratic monopoly system for the sake of tem porary convenience.

ISSUED FROM THE U. S. PATENT OFFICE
FOR THE WEEK ENDING FEB. 12. 1867
patents are granted for seventeen years, the following edule of fees:-

andeal to Commissioner of Patents
a application for Relesue

 61,914.-Arm for Car Seats.-Albert L. Babcock, New Haven, Conn.

61,915.-Dev
Spinevice for Oiling Spindles, Top Rolls, etc., of Spinning and other Machinery.-Samuel H. Barber
East Greenwich, R. I.

n, wool, and other material, for the purpose and substantially as herei
et forth.
, 1616 .-Steam Engine -John S. Barden, Providence, R. I Iclad hene $\mathrm{C} D$ to

61,917.-Mode of Treating Saccharine Matters.-Ed ward Beanes London, England
I claim sublecting saccharine matters to the action of ozone, substantially
s and for the parpose describe
Cleveland Otus for Carbureting Gas.-W. W. Bierce $\underset{\text { First, I claim the fifoat, D, }}{\text { Clich }}$

 , 1,919.-BLowER. - George W. Bigelow, New Haven, Conn I claim the combination of the revolving valve, E, with the vibrating pal
on, D, substantially as and for the purpose herein set forth.
1, 220 .-DIE FOR Forming SpIKE Heads.-Reuel Black 61,920-Dodie For Forming Spike Heads.-Reuel Black
wood, Philadelphia, Pa.
 61,921-CAP For PReservina
1,921.-CAP FOR Preserving J ars.-Joseph Borden, Bridge
 61,922.-Coal Stove.-Albert Brown, Troy, N. Y.
 orth. 923 .-Sash-spring Holder.-Reuben F. Brown, Lewis burg, Pa .
I claim as a new
 of the casi
ing patee,
specitited.
61,924.-Clotnes-line Reel and Hcuse.-M. H. Card and A. Sallee, Fulton, Ill.
 61,925.- Churns.-William L. Card, Gardiner, Ill. Iclaim, the combination of the revolving churn and, stationary dashers
the hollow shaft.a, and remotabe spindes, F, arranged and operating sub
santially as and for the purposes C1,926.-ScREW GAGE.-J. S. Copeland, Bridgeport, Conn. 61,927.-Hymn and Tune Book.-Ebenezer Curtice, Yonkers, N. Y.
I claim. . Frrst, In singing books having their leves cut, as hereindescribed
nase of whole leaves, futervening the cut leaves, for the purpose men toned herein.
seconal.,
serin
enpecifice. 61,928.-Carpet Stretcher.-George O. Dunlap, Chico-

61,929.-Wrench. - Timothy Earle, Yalley Falls, Smith-

61,930.-Machinery for Drying Paper in Paper-making Machine.-Oliver Ellsworth (assignor to himself and Richard Smith), Boston, Mass.

paper oy tho expanstion and contraction or tenston of the paper made and dried. Als.

 61,931.-Preparing Soluble Silica, and in Applying the same to Useful Purposes.-Anthony L. Fleury, Phila-
delphia, Pa. Antedated Dec. $28,1866$.
I claim the process, herein described, for preparing hydrated silica.
I aliso claim, an
anew monufacture, hydrated silica, prepared substantially
 61,932. - Straw Cutter.-Warren Gale, Chicopee Falls,
Mass. First. Iss.aim the pressure cylinder, A, constructed substantially as de.
 set focond. In combination with the above claim, sliding box, A, screws, E E,
spring, D, operating as deecribed and for thepurposes set forth. 61,933.-STraw Cutter.-W. Gale, Chicopee Falls, Mass. $\underset{\text { First, I claim the pressure, }}{\text { Anted }}$

 61,934.-Machine for Straightening the Weft or Fig-
ures of Textile Fabrics.-James Greenwood, Clinton, Mass.

 rollers, or their equivalents, for pr pesenting a ple peece of chloth to the action of
such roller, in the manner and for the purpose as set forth. 61,935.-Belt CI.Asp.- Philander Harlow, Hudson, Mass.,
assignor to himself and Asa F. Hall. 1 claim the belt fastening, composed of the two plates. A and C. construct-
ed and
and esereri bed
1,936.-Edible Preparationfrom Indian Corn -J. W. IIaskins, Charlestown, Mass
I claim the improved edible composition, as made of maize and gum nacacia,
or the same and one or more swee being or flavoring maters or substances,
substantially as set forth. 61,937.-Steering Apparatus.-Horatio F. Hicks, Grand View, Ind. Antedated Jan. 28, 1867.
 y mean, of which the boat may be steered from forward or ait, substantially 61,938.-Machine Gearing.-Alonzo Hitchcock, New York City. Antedated Jan. 30, 1867.
 61,939.-Harness Clamp.-Thomas B. Hodge, Francistown, Mass. Assignor to himself and D. Mcctaine, Groton,

 Also, the combination therewith of one
cen, 1 made suivstantially a a deccribed.
1,940.-Sorgilum Stripper-A. D. Huff and L. D. Huff, Clinton, Iowa.

 61,942.-FENCE.-J. C. Leonard, Union City, Mich.
 61,943.-Cul andivator.-Ivory Lord and Sewall Woodman, 61,943.-Cult
Saco, Me.
 second. The attachment of the teeth by the rods or arms at a distance from
he wod. as shown in Figs, 1 and 4 , and sccured in place by nuts und keys, as
described
Third, The mode of widening or narrowing the
 61,944.-Harvester.-James S. Marsh, Lewisburgh, Pa.
 $2 \mathrm{xm}=2=2$ まUw=wa= =w w

 points of try aduardment ing retained and the adjustment of the pitch of the
tantiall as deecribed. 61,945.-Cooking Stove.-James Marshall, New Orleans, La.
Laim th
 61,946.-Apparatus for Extracting Paraffine, etc., From Oil.- J. B. Meriam, Cleveland Ohio.
 set forth. The cross head, D, friction rollers, c ', in combination, with the
second,
stanchions, G, anarrangedand operated by the link, K , and levers, L , for the
parpose

 scribed. The arrangements of the cases, S , bucket, U, pipe, T, in combination
Fitth the tank, Q,provided with the periorated bottum, k , asand tor the purpose, set forthe, S , buckets, V , in combination with the tank, Q , and
freezing The cases
mixture, for the purpose and in the manner as described. 61,947.-Caster Frame.-Frederick J. Miller, Brooklyn, N. Y.
First, I clatm the casier frame whose base 18 provided with receptacles or
compartments for salt, sug r , etc., when constructed in the manner described
 61,948.-D Unptag Waqon.--George N. Munger, New Orleans, La.

