
MUNF \& COMPANY, Editors and Proprietors.
no. 37 PARE ROW (PARIK BUTLDING), NEW York.
o. d. munn, s. h. waleb. a. e. beach.

VOL. XVI., No. 9.... [New Series.]Tventy-first Year. NEW YORK, SATURDAY, MARCH $2,1867$.

We have a very large number of valuable communications from correspondents who have acted upon our suggestion to write upon practical subjects for our columns. We shall publish them as rapidly as possible. In this connection we wish again to thank our readers for the great interest which they have taken in promoting the circulation of our paper. The subscriptions are still coming in very rapidly and we are now printing 35,000 copies per week.

the south american mediterranean.

Professor Agassiz, in his second lecture (Feb. 11) forgot or deferred the sequel of the interesting geological history of the continent, and devoted the evening to the history of his expedition and the present terraqueous topography of the valley; with both of which our readers are already somewhat acquainted. Certain points, however, struck us with a significance not brought out in former reports, and we shall there fore take occasion to review the ground in a few words.
The valley of the Amazon is no valley to the eye: its bounds are far too distant to be visible at any point in more than one direction if at all, and its slopes are altogetherin appreciable by the senses. Even the current of its waters is imperceptible, and sometimes locally reversed; so that it presents to the voyager no other appearance than that of an
inland sea with a long, low, distant shore. On either side, inland sea with a long, low, distant shore. On either side,
the tributaries have a similar appearance: they are themthe tributaries have a similar appearance: they are them-
selves so enormous that the eye cannot span their breadth: for example, there are four rivers descending from the Guianas on the north, east of the Rio Negro, hardly notice on our common maps by name, yet of a wonderful size, one or
them being no less than thirty miles wide at the mouth. Not to speak of the "great" affluents, the Xingu presents at its junction with the main river a front of forty miles broad and the Tocantins, of sixty; and of all of them, it must be remembered that you ascend from the junction from a hun dred and fifty to hundreds of miles before any appearance oo
rising ground, rocks or minerals can be found. The front or the united rivers, with their nearly oceanic depth, at one of the final outlets, is 150 miles across, and its yellowish white hue (like coffee and milk) tinges the ocean far out of sight of land.
Nor is the Amazon, when you have imagined its to the eye shoreless breadth, to be conceived as a simple stream or belt of water. It is a water system, prevading the country with unnumbered channels and branches for hundreds of miles in breadth. Independently of the usual obstructions and partings of streams, this system has a structure peculiar to itself, resulting from remarkable causes. The swelling of the waters will amount to from thirty to fifty feet, every rainy season, and the remarkable fact is that this takes place from two opposite quarters, the north and the south, not at the same time, but alternately.
The snows of the Andes melt in August and September, and reach the Amazon by October or November. The rains also begin on the south side in September, and the swelling of the southern tributaries pours into the great bed about the last of November. Both inundations continue with increasing volume until March, when the entire sea rises sometimes at the rate of a foot in twenty-four hours. At the same time, the tributary rivers from the north are at their lowest stage; and bearing in mind the fact that the fall of their channels for a long distance hardly exceeds that of the Amazon, or ten feet in a hundred miles, it is evident that a rise of thirty to fifty feet in the main river must not only send a vast back water up the northern tributaries for
hundreds of miles, but must follow the depressions of the hundreds of miles, but must follow the depresslons of the
ground in every direction, and create a network of innumerground in every

At the hight of the southern freshet in March, the rains begin on the north. As the southern rivers subside, the northern rivers swell, and come down in full flood about June,
to gorge in turn the channels of their southern rivals, and to press the sum or their sold its basin in the summer, as it rose upon the northern side in winter. Thus the water system we are describing resembles an ocean not only in extent and evenness of surface, but also in its (semiannual) tides.
The result is that all the roads in this wonderful country are ready made. They are water roads, or ship canals, on the grandest scale of nature, through which the united navies of the world might steam or sail in company, for 2,000 miles from east to west and 500 miles on each side, or 1,000 miles from north to south; freely penetrating every portion of the country through the profusion of cross courses by which the rivers, swollen on both sides as we have seen, twice a year,
have overflowed and run into each other, and in short have have overflowed and run into each other, and in short have
divided up the whole land into islands. Taking this into view with the fuct that nearly all the principal countries o South America-Brazil, Peru, Bolivia, Ecuador, New Granada Venezuela-have their main drainage and the best portion of their domain either in this valley or in navigable connection with it ; the-importance and the justice of the late decree of the Emperor of Brazil, opening the Mediterranean of South America as a free highway for all nations, are seen at once in a conspicuous light. The Amazon by nature belongs to South America and mankind.
The treasures of commerce to be directly drawn from nature here, have already been brought in a general way to the notice of our readers. We may add to the 300 kinds of choice timber, remarkable for thsir density and beauty o grain, which cover the entire country with dense forest, an endless variety of strong and light textiles, a variety of fruits of the myrtle family, as numerous and as fine as that of the rose family that embraces all the choice kinds of our northern climate, another family akin to the magnolia, embracing also a great variety of luscious fruits, and still another family of which the character was not defined, quantities of indigenous cotton, probably th3 greatest on the globe, the material of chocolate, caoutchouc, Brazil nuts, etc., in inexhaustible profusion everywhere, and finally the grand staples, drugs and dyes of the richest character and variety. Settlers would have nothing to do but to gather these stores from gorge load cargoes of treasure almost directly from the ground on load cargoes of treasure almost directly from the ground on
which it grows. The aquatic vegetation is so luxuriant that it is never apparent where the land ends and the water be it is never apparent where the land ends and the water be
gins, and the latter is often concealed completely by a prairie gins, and the latter is often concealed con
of rank vegetation and gorgeous flowers.
But there are not now 250,000 people in all this new world and the bad reputation of the climate, which the learned pro fessor stoutly combats-declaring it, from ten months' trial, most delightful and salubrious-is imputed to the unanimous hue and cry of the officials exiled from time to tims to those wild though luxuriant solitudes, whose natural discontent has attributed to them every deadly evil that imagination can conceive. Of the temperature and other interesting matter of this lecture, we need not repeat what we have heretofore republished.

THE GLACIAL THEORY AND THE TROPICAL GLACIERS

Professor Agassiz' third lecture in New York was a care ful elucidation of the Glacial Theory, which he enjoys the honor of having developed and established; proving that a period of a much lower mean temperature than at presen must have once existed in the now temperate and torrid por-
tions of the plobe when that peculiar "current" known as tions of the globe, when that peculiar "current" known as inents, and performed an important part in preparing them for the habitation of man.
The first question is, What is the glacier? We have styled it a current, and such it is, as much as any that exists in the liquid form of the same element, governed in part by the same laws, but performing offices for which water is not adapted. Its law is motion under the influence of heat, in the direction of increasing temperature. Its formation is from snow, at such elevation as under existing thermal conditions permits an average temperature as low as 32°; but the com arative warmth of a lower elevation or of a warmer latitud usually assists. By this means the snow is alternately soft ened in part to suspended water, and conglomerated by the freezing of the suspended water, until it forms a granulated
Its law of motion is in substance the simple fact that wa ter expands in freezing. When formed on a mountain side a a proper elevation for the required temperature-and equally when formed on a level, at the right latitude-the glacier is constantly expanding by the expansive congelation of sus pended water or rains; and finding little resistance at its lower limit (of altitude or latitude as the case may be) but being more powerfully resisted in the direction of greater cold and igidity, its horizontal expansion of course pushes in the former direction. In other words, it moves on ward, by a simple and will continue in the direction of warmer temperature not warm enough to melt and destroy it entirely. It is evident that the loose angular rocks constantly crum bled off in the path of the glacier must be carried or rolled long under it, and often embraced and frozen into it, in grea
numbers. Again, the great transparency of ice to heat mits the sun's rays to pass through to the rocks beneath and within and comparatively to warm them. Thus the rocks rolled along under and those carried within the glacier co-
aperate in thinning by their comnaatity wramth the ice that
separates them, while the grinding movement of the glacier also tends to break it, and thus the rocks practically attract each other, accumulate, and are passed onward until some obstruction arrests them or some cavity receives them. Not to particularize and explain here the very distinct and characterstic arrangement of these accumulations in the Alps, where the active process may be now observed, it will be evident to the reader that some of their peculiarities must be recognizable wherever the glacial drift has passed along, in the disposition of the fragments and in the effect of their tremendous attrition upon themselves and upon the surface of the underlying rock.
The first suggestion of the glacial theory was due to the discovery from the kind of traces above referred to, that the glaciers of the Alps had once pushed out not less than twen-ty-five miles from their present habitat and extended their flow across the plain of Switzerland until they abutted upon the Jura. The same traces also gave proof that (as might indeed be presumed) they were then some 5,000 feet thicker than now. The inference was imperative, that a glacial temperature then prevailed at the moderate elevation of the plain of Switzerland, and hence must have prevailed in other parts of the world similarly conditioned. This led to examinations everywhere for traces of the glacial drift, and it needs only to be added that they have everywhere been found abundant. In the British Islands, in all parts of North America, and more lately in South America, near the equator,-here commencing on the Andes and moving across the continent eastward, far into tho present domain of the ocean-the polished, scratcher and furrowed surface of the rock, its grooves always running north and south, (except where the declivity of mountains had changed the direction) and the "drift" of rugged but tamed and abraded fragments, show the unmistakable action of those " mills fo God " once built to grind the face of the earth smooth and pulverize materials ior the plastic hand of Nature now dissolved long since by the breath that built them, having served their end.

LETTER TO MECHANICS AND INVENTORS.

We notice in one of our Michigan exchanges that a stock ssociation is about organizing in Detroit with a capital o $\$ 20,000$, which is to be employed in defraying expenses of getting up models, obtaining patents, and for establishing agencies for the sale of patents throughout the country. The par value of the stock is fixed at $\$ 25$, and persons becoming members are required to pay one dollar initiation fee, and a further fee of fifty cents per month, making a total tax of seven dollars which entitles him to a share of stock.
We presume that the parties to this organization are all respectable gentlemen, but it is evident that they are engaged in a business which they do not understand. Efforts have been repaatedly made in this country to organize similar associations and every time the attempt has been made it has failed. Protective or joint stock societies of this kind have also frequently started up in England and though backed by big names, failure has always been the result.
Inventors very naturally and very properly distrust a association that undertakes the double business of procuring association that undertakes the double business of procuring and selling patents. The two operations cannot be success fully conducted jointly without causing suspicion. Some in ventions will inevitably receive much more attention than others, and it is wholly impracticable to keep a stock of patents on hand for sale like merchandise. The very idea will suggest an absurdity to any practical mind. If the as sociation should chance to get hold of one good invention which promised success they would be quite likely to employ heir whole force of salesmen to push it forward in ever direction, and thus less important and less easily-managed inventions would have to be suspended.
A member paying seven dollars for his certificate may never have occasion to employ the services of the association But suppose he does seek their services, what pecuniary ad vantage does he gain? Nothing more than the facilities possessed by the association and for which of course he must pay extra charges.
We do not object to this scheme as a speculative enterprise but we do not perceive that it possesses the merit of novelty or is likely to afford any advantage to either mechanic or inventor.

WHEN AND WHERE DOES THE DAY BEGIN

As we travel eastward the day begins earlier: near the equator starlight appears an hour earlier for each thousand miles going east. When it is sunrise in New York, the people of Europe have had sunlight for many huors, and the Californians are still in their beds dreaming. Evidently the day has a first begining, and at the eastward. But how far and where? What are the people who first see the light of Monday morning?
It is the sun which brings the day; where does he first bring Monday? If we could travel with him we might find out. Let us suppose the case. We will take an early start : at sunrise on Sunday morning, with the sun just at the point of peeping over the horizon behind us, we travel westward. As we go, the people give us a Sunday greeting ; we bring Sunday with us to Pittsburgh, St. Louis, Salt Lake, cisco. At San Francisco, our faithful chronometer informs us started on Sunday morning and it is Sunday morning still We go on, still on Sunday morning. Will this Sunday morn, ing ever end? The quiet Pacific knows very little of Sunday or any other day, and our question scarcely receives an echo for reply. When we get to Yokohama in Japan, or Shanghai in Chind, wo search for some Yankee, wide a walee in the ear-
Iv moming. ami we sre toll for the fret time that Wrandey

