kase. But for years past the American cheeses have been growing in favor, not only here, but in England. A late number of the London Crocer says:-"The Americans and Canadians are emulating our most successful dairymen, and really choice American and Canadian cheese may now be obtained from those English importers who have made them selves well acguainted with the best sources of supply.'
If cheese could be afforded at a fair price as compared with meat, there is no reason why it should not become, in a measure, a substitute, as it seems to be especially adapted to restore the force expended by those whose work is extra laborious and exhaustive; and, indeed, it may be questioned, now, whether it is not as cheap, all things considered, as fresh meats. It is a subject worthy some consideration.

items of the state of iron mandeacture in portions of the eastern states.

One of our reporters has recently made a flying trip through some of the Eastern States, and noticed that in general iron workers appear to be doing well, having orders enough on hand to last some time
In Hartford, Messrs. Geo. S. Lincoln \& Co., an old established and well known huuse, are doing their usual line of castings and machine tools. Messrs. Lincoln \& Co. have built most of the tools for Colt's Armory, and large numbers of milling and
other machines for Wheeler \& Wilson and various sewing machine factories. Their work is first clase, and in the dullest times they have been busy.
Pratt, Whitney \& Co., have one of the handsomest and most convenient machine shops in the state, and the proprietors are both known as superior mechanics. They manufacture machine tools of all classes, and also the Weed Sewing Machine. Pratt \& Whitney's engine lathes are most excellent machines, and are fitted witha patent attachment for turning tapers without moving the centers out of line with each other as is the case when the tail stock is set over.
Woodruff \& Beach have a lot of orders for stationary en gines on hand. They make a strong, substantial, and highly finished machinc. They have built engines for the United States Government, and also for many factories throughout the country. Their engines are fittod with a variable cut-of of Green's patent which gives great satisfaction.
In New Britain, Conn,, Messrs. Landers, Frary \& Clark have recently erected a large and splendidly appointed cutlery estallishment, near the depot, which is now in active operation. The Stanley Works are also about taking up another line of manufacture, for which they have put in one of the Shaw \& Justice Hammers. Messss. Thomas Humason \& Beck ley are running
mers, etc., etc.
In New Bedford, the Gosnold Mills are at work on horse shoes, employing a few men at present. In this town, however, we were much pleased to notice an innovation in the machine line that is creditable to the employer and beneficial in a moral point of view; namely opening a new branch of trade to female labor. These opportunities are so few that it is matter of congratulation that another chance is offered
them. The Morse Twist Drill and Machine Company employ them. The Morse Twist Drill and Machine Company employ
twenty-four female machinists in the manufacture of their twenty-four female machinists in the manufacture of their tools, and we saw them hard at work a few days ago, cheer-
ful and contented. These girls do filing, of a light nature, just as well as men could, and much better than boys who were "so full of the devil," as Mr. Morse stated, that nothing could be got out of them. They earn good wages, are exposed to no bad influences, being in an apartment by them they tend light contented and prosperous. Beside fing neous tasks. This is certainly much better than being stifled up in a noisome workroom, cramped over a needle for a mis erable stipend. We wish our space permitted further men. tion of this admirable little shop. Mr. Morse is an alive mechanic, takes the Scientific American as a matter of course and believes in going ahead. He has just built a large ad-
dition to his shop, and is prepared 'to do machine work dition to his shop, and is prepared to do machine work
of all kinds. Mr. Morse is an inventor of a remarkably origi.of all kinds. Mr. Morse is an inventor of a remarkably origi.-
nal turn of mind, and has got up special machines foralmost all his work.
In Worcester, Mass., Messrs. L. \& A. G. Coes are making their celebrated screw wrenches which they have had in market for many long years. The Coe wrench is an "indispensable institution," as their orders prove conclusively.
Messrs. Ethan Allen are making their celebrated Damascus guns, and also pocket pistols and revolvers. The several machine.tool makers are doing a fair amount of work.
In Winsted, Conn., the scythe and axle makers are doing well. Mr. Hurlbut, axle maker and general forger, infurmin us that he has no reason to complain.
In Seymour and in various towns alongthe Naugatuck kail) road we find a fair activity for the season, particularly in cutlery establishments. The axle trade of this country must be something enormous, for we find establishments very busy and more going up. The Etna Spring and Axle Company are just starting at Bridgeport, and the Spring Perch and Axle Company of that place, some time established, are doing a good business.

New Year's.

J. B. Aiken, of Franklin, N. H., has sent us a nice bundle of warm stockings knit on his patent machine. He also sends us a package of photographs, taken by him last summer in Colorado-being his first attempt in the art. The specimens would do credit to an experienced artist. Another friend in Pittsburg has forwarded some "Old Rye." put up in one of Stoekel's patont graduated bottles. Will the donor be kind enough to inform us what he wishes us to do with the contenta?

SHOES VS, SANDALS...-THE CLASH OF ATOMS.

In the state of nature the feet of man are the least vital parts of his body, and as they were intended to perform heavy service they were endowed with extraordinary powers of en durance. But fashion and art long ago ignored these good designs of nature, and now our feet are proverbially weak and sore. Every oneat sometimehas his corns, or that other disease
quite as common, which make his presence hateful to his best quite as common, which make his presence hateful to his best friend. Although the fect are not the seat of fatal diseases, yet they are the open portal which invites to the lungs its most terrible enemy. We learn from the ancient poets that the feet were regarded as objects of beauty, but now our fee are so pinched out of shape, that we may seareh a long time for a well formed foot, unless we go to the
or among the semi-barbarians of the east.
This state of things did not exist in ancient times : if corns had been invented in his time, Job would surely have told us bout it. And at the present day the poor Indian of untutored mind knows nothing of our fashionable diseases Corns and mis.shapen feet are incidents of modern civiliza tion.
Such a statement of the case as this is sufficient to suggest to the minds of most people, the cause and perhaps a remedy. The radical view of the subject is, that the cause is leather and the remedy is sandals: leather obstructs the healthful perspiration and ventilation of the feet almost as effectually as would sheet iron: the feet need no more protection than the hands or the face: down with leather. But I ${ }^{2}$ am no radical. Thefashion of centuries is too respectable to be dealt
with in a violent way. "Nothing like leather" has been too long a household proverb to be forgotten in a day,
It is entirely practicable however, to institute
ing of reformation without making ourselves the begining of reformation without making ourselves obnoxious to the reasonably fastidious. Thus: We may refuse to wear
shoes which pinch us or tend to press the feet out of shape, we may prefer thin porous leather, and wear cloth shoes whenever fashion will permit us. And we may think of the reform and reason upon it with our neighbors. In these little ways, we shall strengthen ourselves in the faith and
hasten so much of the millennium as pertains to the feet. In my oninion tere is to be a fruitful field for the inven suggest a few problems: How to make leather less unsuit able for shoes: Better ways of uniting cloth uppers to leathe soles: How to weave a shoe and attach a sole: The best fiber for a cloth shoe: How to protect the feet from rain and yet secure ventila
the clasti of atoms.
Prof. Tyndall and others advocate the theory that the heat of combustion and chemical action generally is only the heat of collision or percussion. In combustion of coal, for example, the a toms of carbon and oxygen rush upon each other and
thus strike firc. This view of the case involves some very inthus strike firc. 'This
One pound of carbon in burning, as determined by experi ment, gives out 8,000 units of heat, that is, heat sufficient to aise $8,000 \mathrm{lbs}$. of water one degree. Now the theory implies that an equivalent amount of force (vis viva) has been expended heat is $772 \times 8,000=6,276,000$ foot pounds. Now on the sup position that the pound of coal is burned in one minute we have the force represented in horse-power, thus: $6,276,000 \div$ $33,000=18 \% 15$ horse-power. But we know that by pulveriz ing the coal and burning it in pure oxygen it may be consumed in an indefinitely short space of time. Suppose that the time taken be so long as one second, then the number of horse-power concerned in that time is $60 \times 187 \cdot 15=11,229$!
Yet this Yet this calculation gives still a very imperfect notion of the immensity of the force involved in the burning of a pound of coal. The distance through which atoms move to unite chemically is unmeasurably and insensibly small. The ve locity which a pound of matter must attain in order to evolve 8,000 units of heat by percussion is $\left(-\frac{1}{5} \times \frac{V_{2}}{2}=8.000\right) 3.514$ feet per second. What must be that force which can start matter from a state of rest, and in an insensible space give it
such a velocity? What the resistance that instantly destroys the momentum? Gravity, which moves the universe, requires 1,600 feet of space and 20 seconds of time.

OUR STEAM NAVY.

It may be said with some truth that a man's rivals are his true critics. So in nations we learn of our failings from rival nations. We copy a critique on our present steam navy,
from The Encineer, which embraces a very sensible discussion of a subje encer, which embraces a very sension country We may say en passant that the management of the engineer ing department of our steam national marine bas offered the opportunity of which The Engineer avails itself. There is dent need of improvement, as may be seen by the compari son which the Englis
and American yessels
mafine engines in the unitid states naty. If reliance is to be placed on the reports which reach u s from America, it is not only probable but perfectly certain
that the efficiency of the new navy now springing into existence in the States, will be seriously impaired by the defective nature of the machinery with which it is being supplied. The American press dencunces the Bureau of Steam Engineer-ing-a Government department of which Mr. Isherwood is
clicf-in no measured terms; and apparently the complaint is not without foundation. It is quite possible that all that is said of the engines of the new fleet is not perfectly true; but the arguments put forward by such of Mr. Isherwood's chief are so weak, and the resalts of practical trials of his
machinery are so inferior to those obtained with the marine engines of the old world, that we are forced to the belief that the tales which are told of official incompetency and the failure of engine after engine are substantially correct. Nor is it to be supposed that engines defective in design and work manship are supplied to Government ships only by Govern ment officials. Even private manufacturers appear to be singularly unfortunate in their dealings with the American na yy. Thowe are not wanting, however, who with much plain palting to use somewhat of a cuphemism-assert that tho fact is due to the interference of men who are unable to supply good engines themselves, and who are unwilling to be beaten by others. In a word, both the theory and practice of American marine engineering as far as concerns figlting ships is, at present, in an extremely anomalous condition, while the literature of the subject as represented by both he editorial and correspondence columns of the scientific and daily press is simply unique in its character.
Mr. Isherwood's screw engines of the largest class are for he most part similar in type to those of the Miantonomah, already described in our pages. They are back-acting, and so far resemble Maudslay's double piston rod engines, but there the resemblance ceases. They have single piston rods laying hold of a rectangular frame consisting of a crosshead, to the center of which the piston rod is affixed ; a cross tail, off which the connecting-rod works; and a pair of round side rods, one of which passes above and the other below the crank shaft. In all this there is nothing remarkable. But the capacity of the cylinder for a given power is very much less than English engineers consider sufficient; while the dimensions of the boilers and the weight of the machinery, taken as a whole, is much greater. Mr. Isherwood does not believe in expansion, and therefore his cylinders are small, be cause the terminal is nearly as great as the initial pressure. But his boilers are large because he uses steam uneconomically. As an illustration of his most recent practice, we may select he machinery of the Franklin, one of those magnificent wooden unarmored frigates intended to steam at a high speed and to carry very heavy guns, with which it is proposed to keep American commerce safe from Alabamas in future. Much has been heard of this new fleet in this country, and all that relates to it possesses great interest. We learn from our American advices that the Frankin is an enormous ship of splendid model and as strong as wood and iron can make her. It is obvious that in ships intended to act the part of police of the seas, speed is the first essential, yet Mr. Isherwood promised that he would get ten knots! out of her, and it appears more than probable that even this poor result will not be realized. The Franklin's machinery consists of two "back-acting"-return connecting rod-engines with cyliners 68 inches in diameter and 3 feet 6 inches stroke. These re obviously moderate proportions for a ship of the class, and if the hoilers were designed in accordance with English practice we should simply say that the vessel was underpow-
ered. But the boilers are designed in accordance with Mr ered. But the boilers are designed in accordance with Mr.
Isherwood's practice which is sufficiently original. There are Isherwood's practice which is sufficiently original. There are
four main boilers constructed with vertical tubes under Marfour main boilers constructed with vertical tubes under Mar ilar construction, the only difference being that very little water is carried in them ; the steam being dried in the upper portions of the tubes. Without going into details, for which we have not space here, we may give a fair idea of the steam generating powers of these boilers by stating that they have no fewer than 583 square feet of grate area, and about 14,500 feet of heating surface. Let us compare these proportions with English practice. The Lord Wurden, of 1,000-horse power nominal has 700 fect of grate and 19,000 feet of heat ng surface. Her boilers are designed to supply three cylin ders, each 91 inches in diameter and 4 feet 6 inches stroke, the steam being cut off at about one-sixth of the stroke. The displacement per revolution, omitting clearance and waste in ports and passages, being 1219.5 cubic feet. The Franklin has, as we have said, 583 feet of grate, and 14,500 of heating surface, intended to supply two cylinders 68 inches diameter and 3 feet 6 inches stroke, representing a displacement per the of 353 cubic feet only. Assuming that the engines Maudslay $\begin{gathered}\text { Warlen are properly designed-and Messrs. }\end{gathered}$ proper displacement for the cylinders of the Frankin would be $1015 \cdot 66$ cubic feet, equivalent to a pair of cylinders of $113 \frac{1}{2}$ inches in diameter, the stroke remaining 3 feet 6 inches; or $100 \frac{1}{2}$ inches diameter if the stroke were increased to 4 feet 6 nches-that of the Lord Warden's engines. The accuracy of the deductions to be drawn from a comparison of these proportions depends, of course, on the piston speeds being the same Assuming the number of revolutions in the case of the Lord Warden to be 60 , we have a piston speed of 540 feet per minute. It is not likely that the pistons of the Tranklin will be run at more than this, which is equivalent for a 3 feet 6 inch es stroke to rather over 77 revolutions per minute. It is therefore olvious that her cylinders are out of all proportion too small for the boilers. Indeed they could not possibly work up the steam which the boilers ought to make, were it not that the cut-off valve does not close till the stroke is nearly completed.
It is not in the cylinders alone, however, that. Mr. Isherwood's design is objectionable. Catching at the idea that pleaty of surface is essential to the life and casy working of a bearing, the chief of the Buresu of Steam Engineering carries out the principle like an amateur, manifesting an utter disregard for the teachings of practice. The bearings of the crank shaf are made half as long again as the longest in use in English marine engines, and as a result they bind and cut. Americans are peculiarly attached to a system of trial which consists in lashing a vessel to aquay wall, and then running the en gines, usually for a pariod of seventy two hours. During
her trial under these circumstances, instead of seventy ty-seven revolutions, which ought at least to have been got out of the engines as we have seen, the journals of the Tranklin's machinery heated so much even at twenty revolutions, that that speed could not be maintained; and the engines were run for the greater part of the trial at but from fifteen to eighteen revolutions per minute. As to the condenser, constructed under Sewell's patent, it is enough to say that the vacuum never exceeded 24 inches; while the superheater acted so efficiently that the temperature of the entering steam being 270 degrees, that of the issuing stcam on its way to the cylinders was 272 degrees. It is not easy to imagine a more miserable fiasco from begining to end; and yet fects porkin is by no means an isolated example of the de are engined. There appears to be a total lack of that open competition and of those fair public trials which have done so much to foster British talent and enterprise. In their stead we have a birment department not free from thi
 imputation of corruption, and certainly ruled by the demon of red tape; and a system of trial which, assuming it to be
founded on the true principles of scientific inquiry is really open to every species of abuse; while, more astounding than all, we find what should be a great naval nation entrusting the construction of its machinery on which it must like every
other nation be mainly dependent for the maintenance of its other nation be mainly dependent for the maintenance of its
power at sea, to an individual who blatantly denies the truth power at sea, to an individual who blatantly denies the truth of principles which not only bear the test of the most searching scientific investigation, but are here verified daily in actual practice. Mr. Isherwood may, perhaps, think that we write harshly of him. Possibly he has reason to complain. He may perhaps find some consolation in knowing that in the would wish to see his post ry, we believe him to be the right man in the right place. ry, we believe him to be the right man in the right place.
Indeed we could wish to see his principles and his practice Indeed we could wish to see his principles and his practice
adopted by every naval power in existence-except Britain. adopted by every

Simple Device for Frinting Pictures
Professor Towler, in Humphrey's Journul, suggests the following simple and excellent method :-
"We will premise that the piece of opal or porcelain plate is of the same size as the negative, is quite flat, has already been sensitized by the collodio-chloride process, and is now ready to be placed on the negative. With a diamond cut off two corners from one end of the porcelain plate: these corners are about the same size as the glass corners of an ordinary printing frame. Be careful not to interchange these corner pieces, so as to put the right corner piece on the left side and vice versa. and do not turn them wrong side up, but place each in its place from which it was broken off esactly as it was before the diamond was used. Now take a small fragment of shell-lac, or a little piece of shoemaker's wax or of pitch, and melt it upon the lower side of these dissevered cor ner pieces, and place it upon that corner of the negative on which the prepared porcelain will rest when in position. Apply heat to the corner of the negative until the piece of opal is accurately cemented in its place. The other corner piece is now cemented in its place on the opposite side, and in such a manner that the sensitized porcelain plate, when placed in the negative,shall be in accurate apposition with the triangle pieces that were cut off.
"By holding this combination so that the lower end rests on the table whilst the plate itself is inclined at an angle of about forty-five degrees, it is evident the porcelain plate will slide down until it is stopped by the two corner pieces, which originally belonged to it. You may remove the porcelain plate as often as you like, it will always regain the same position when restored to the negative under the conditions mentioned. It remains only, therefore, to clamp the two plates together with four clothes pins, one in the middle of each side: more may be used when the plate is large, as for instance, a plate twenty-two inches long and seventeen wide
" During exposure the cdmbination is reared against a blackboard, or a board covered with a piece of black velvet or cloth to exclude all light from the back."

To Light a Dark rioom.

The London Builder recommends a plan for lighting a dark room in which the darkness is caused by its being situated on a narrow street or lane. The Builder says if the glass of a window in such a room is placed several inches within the outer face of the wall, as is the general custom in building houses, it will admit very little light, that which it gets being only the reflection from the walls of the opposite houses. If, however, for the window be substituted another in which all the panes of glass are roughly ground on the outside, and flush with the outer wall, the light from the whole of the visible sky and from the remotest parts of the opposite wall will be
introduced into the apartment, reflected from the innumerable introduced into the apartment, reflected from the innumerable faces or facets which the rough grinding of the glass has produced. The whole window will appear as if the sky were beyond it, and from every point of this luminous surface light will radiate into all parts of the room.
$\dot{W}^{\text {elding }}$ Winhout Heat.-It is a curious fact that iron and even steel, can be welded by pressure, or by pressure combined with friction or rubbing. This may be seen in the action of the nail machine where two or three nails or tacks come together between the header and the dies. In this case we may saw across the sections of the connected tacks with out discovering any evidence of separation. So sometimes the steel point of an upright shaft turning under a great pressure steel.

ISSUED FROM THE U. S. PATENT OFFICE for the week ending Jan. 8, 1866 Reported oolciallyfor the Scientifc American.

Patents are granted for seventeen years, the following being a a schedule of fees:-
on filing each Caveat

appead to Commissioner or

In addition to which there are some small revenue
of Canada and Nova scotia pay $\$ 500$ on application.

60,987.-Boots and Shoes.-Darid M. Ayer, Lewiston, Me. First, I claim forming alr cells or spaces between the outer and inner soles
of boots and shoes by means of corrugated or fluted sole leather, substantially

60,988.-Paddle Wheel.-Eli Banks, Millport, N. Y. Iclaim the combination of the spoke, A,
scribed and used for the purpose set forth.
60,989.-Composition for Lubricating Journals.-Berard Battle, Pittsburg, Pa., assignor to Daniel Coyle o, Pa

 60,990 .-Furnace for Steam Boilers.-John. Best, Lancaster, Pa.

60,991.-Steam Generator.-William Branagan, Burlingclaim applying a iacket, D , to a bofler, which 18 constructed substantially as described, so tuat this acacket can revolve around the boiler, substantiall 60,992.-Cider Mill.--E. W. Branch, East Henrietta, N. Y First, I claim the windlass wheil, K, having three separate functions of
operation, composed irst of the side pin, h, and rom, M, for rapidly turning up

 substantially as set forth. 0,093.-Harvester Rake.--Franklin Brua, Gordonville

 60,994.-Machine for Making Tin Cans.-Walter S. Buck Philadelphia, Pa
 substantially as described.
Thirt, The comben intion of the slotted blade, H , with the slotted and vibrat
 substantially as described
Fandh, clain the combination of the pressure arm, C, haseplate, A, and dex-
pially as described, , when arranged and operating for the purpose substan-
tial 60,995.- Rootark PUMP.-W. Butterfield, Madison, Wis.

 60,996.-Extension Table.-Nelson Carl, Cincinnati, Ohio
 60,997.-Burton-Hector Carlos (assignor to himself and Henry C. Watson), New York City.
claim, as a new article of manufacture the nove

 60,998.-Breech-Loading Fire-arm.-M. J. and H. M. Fir Chamberrin, ©laim using ti:e trigger as a brace

 Thir, The proiection, M, when constructed and arranged in the manner
and for the purpose set forth. 60,999.-Stave Machine.-W. S. Colwell and F. Veazie Pittsburg, Pa.

 gand h , as heretn described and for the purpose set forth I, 000.- Featherred Clooth--Alice A. Condit, Muncie, Ind Iclaim an article of manuracture formed by trimming, folding back, an
sewing upon cloth or other material, the feathers of geese, birde, or fowls, a 61,001.-Bed Bottom and Seat.-Edward S. Cross, Lime
Rock, Conn. Rock, Conn.

61,002.-Device for hanging Paint Pots to sides of Bulldings.-James H. Flagg, Pcrkinstille, Vt. Ante dated Dec. 22,1866
 61,003.-CAR Couplinge-A. M. Freeman and A. M. Stoner Springfiield, Ohio.
weclaim the combination
 61,004.-Apparatus for Carboretting Aire-Charles \mathbf{N} England Portable Gas Works Company), Springfield $\underset{\text { rst wass }}{\text { Mal }}$

 scribeet. The attachment of the metallic box B, arranged substantially as and
for the phe purpes shown
for

61,005.-Bearing for Shafts for Steamships.-George K
 specile.
$61,006 .-A r T i f i c i a l$
suel.--George Gray, Temperanceville, I Paim. the artit ciala feel composed of the ingredients, prepared in the man
ner and proportions, substantaily as set fortil. 61,007.-Back Sights for Fire-arms.-Henry Hammond, First, Iclaim the Conn.

 61,008. - Inhalers.-Ira Holmes, Moscow, N. Y
 61,009.-Stone Dresser-B. S. Hunt, Philadelphia, Pa

 scribed. T , T , spinde , step, $\mathrm{g}, \mathrm{h}, \mathrm{m}$, constructed in the manner and for the
purposed
 61,011.-Skirt-suppor'ter,-John L. Kendall, New York City, assignor to Ellen A. Vail, Southold. Antedated
 61,012.-Wringing Machine.-_J. W. Latcher, Albany, N Y., and John Young, Amsterdam, N. Y., assignors to

 61,013.- Torch and Match-safe.-William J. Ludlow,
Chardon Ohio. Chardon, Ohio
61,014--SA ws.-A. C. Martin and J. Woodrough, Hamilton,
 61,015--Barreines Cocks.-Alexander, John and Thomas McKenna, Pittsburg, Pa.
 61,016.-DEVICE FOR Protectina Horses' Necks.-Jacob P Meyer, Waukesha, Wis.
 61,017.-Method of Separating Hard Rubber from Porcelain Teeth.-Alexander G. Nye, Weymouth

61,018.-Mangle.-S. U. J. Foreman and N. Palmer
Auburn, N. X., assignors to selves and David Lyman Middlefield, Conn. First. We claim the app pication to the rollers of mangles of hard rubber or
vicantite, substantiall in the manner and for the purposes deseribed.

 set forth. We claim the method of gearing the rolls of manyles, or other like
Fachines, when arranged so as to move with equal or diflerent velocities,

 61,019.-Ore Crushers.-William P. Parrott and John J. We claim the modetherembers.

