Assuming the boiler to be at work a ta pressure of 45 lbs . the water will be at a temperature of about 230 deg. No
fresh water cannot for an instant be maintilined at a tempera ture much greater than 212 deg., under the ordinary atmos pheric pressure. If, therefore, the pressure upon it be sud clenly liberated when heated to (say) 290 deg., a most violent disengagement of steam, and projection of water along with
it, must incvitably take place. The shells of boilers are conit, must inevitably take place. The shells of boilers are con
stantly liable to rupture from original unsoundness of the iron, bad riveling, corrosion by bad water, or furrowing. This being the case what are we to expcet when the opening of a weak point suddenly liberates the steam pressure from 30,40 or even 60 tuns of heated water, which are waiting below to
burst partly into steam? To render the matter perfectly inburst partly into steam? To render the matter perfectly in
telligible, we will state the distinct and consecutive operations into which, according to Mr. Colburn, a boiler explosion, al first, the rupture, under hardly if any more than the ordinary working pressure, of a detective portion of the shell of thi boiler-a portion not, much, if at all, below the water line,
Second, the cscape of free steam from the steam chamber, and Second, the escape of free stcam from the steam chamber, and
the conscyuent removal of a considerable part of the pressure the conscyuent removal of a considerable part of the pressure
upon the water, hefore its containcd heat can overcome its in upon the water, hef ore its contained heat can overcome its in Third, the projection of stcam, combined, as it necessaril must be, with the water, with great velocity, and through a greater or less space, upon the upper sides of the shell of the
boiler, which is thus forced completely open, and perhaps broken. Fourth, the subsequent disengagement of a large quantity of steam from the heated water now no longer confined within the boiler, and the consequent projection of the already separated parts of the boilcr to a greater or less dis
tance. This unique theory harmonises so well with the cir tance. This unique theory harmonises so well with the cir
cumstances of stcam boiler explosions, that we can admir and accept it. It is so consistent with all the phenomena at tending these explosions that it leaves no room for doubt or questioning as to its soundness. It receives support from the well-known fact that boiler explosions frequently take place at the starting of the engine, when there is a sudden withdraw the soundness of the theory, however, would be suddenly to condense steam in the stcam chamber of a boiler at work, and condense steam in the steam chamber of a boiler at work, and and the stcam rot up to 301 lb . or 401b., and if a quantity of water were suddenly thrown into the steam space, the steam would be suddenly condensed, and an explosion of the boiler would doubtless follow. Such an experiment would of course be attended hy considerable danger, and the obicet gained
would probalily after all be very inadequate to the risk involved. It scems to us, however, that the question has just been practically solved, and the only evidence wanting actual ly supplied, although under most distressing circumstances We allude to the recent loss of the Ceres, in the reports of which catastrophe it is stated that the sea rushing suddenly In unon the boilers cansed them to burst with fearful results. here is a singular thougl melancholy confirmation of Mr. Colburn's theory. The cold water suddenly cooled the boiler plates, condensed the stcam in the steams space, relieved the pressure on the lower part, and forthwith the steam and water from below burst forth with resistless energy upon their er rand of ilestruction.
THE COTTON MANUFACTURE--CARDINGTAND DRAWING.
In our last issue we traced the manufacture of cotton from its gathering to its preparation for carding, describing the preliminary process, intended mainly for cleaning it from foreign substances.
The next process is the carding. The cotton as it comes from the picker is wound, as a bat, on a core of wood. It is of a width calculated for the carding machines upon which it is to be placed. The " lap", as it is called, is placed in a frame over rollers which insure its rotation, the lap being gruided by the journals of the core, in slots made in side pieces attached to the carding machine. 'The lap is fed into the card by fluted rollers as in the "picker," and is received by a small cylinder called the " licker-in," which is covered with card-
fine wire teeth held in leather. This cylinder revolves with fine wire teeth held in leather. This cylinder revolves with lap and depositing them on the teeth of a large cylinder similarly covered with card. This larger cylinder is enclosed in a frame that supports on it, for about one-third of thecircumference of the cylinder, cross lags of wood, having on their inner surfaces a layer of card, the teeth of which are bent in a direction contrary to the revolution of the cylinder. These lags are removable, being held in place by pins and adjusted to hight by set screws on which their ends rest. They must be often cleaned from the coarse and dirty fibers, which is done by an operative called a "stripper," who lifts the lags and with a hand card removes the accumulation of dirty cotton. The centrifugal motion of the large cylinder throws he heavy particles of dirt to the outside, and what is not de posited on the claw-like teeth of the lags is left in a recep tacle under the cylinder. All this is "waste," of a dark gray color and filled with dust. It is used for the manufacture of coarse bagging and for similar purposes.
In the front of the carding machine and in close connection with the surface of the large cylinder is a smaller cylinder, larger however than the "licker-in," and called the "doffer," because from that the cotton is delivered after being carded. This delivery is effected by the action of a vibrating bar, armed with saw teeth, which has a vertical and horizontal movement by the action of a crank. This "comb" takes the film of cotton from the surface of the "doffer" and tbrows it down into a flat funnel that deli vers it in an endless cylindrical belt, under a roller actuated by an endless belt, on which the cotton travels to its debouche at the end of the
train: Usually this train of cards consists of a number of machines-a dozen or thereabouts-each in its own action independent, but in the delivery of their products acting in harmony. These streams, one from each card, meet and mingle together and debouch at the end of the train be-
tween iron rollers which compress them together into two tween iron rollers which compre
flattish ribbons of white cotton.
But this product must be again submitted to the operation of carding. To do this the ribbons are combined in another lap," by means of a winding machine, technically denominat.
ed a " lapper," and then are placed into another set of card called "finishers," the first bcing known as "brcakers." I these no rollers are necessary to give rotation to the "lap,"
as the ribbons of which it is composed have considcrable as the ribbons of which it is composed have considcrable
tenacity and can turn the "lap" by their own strength, as it gradually drawn into the card by the fluted fceding rollers. The operation on the "finishers" is precisely or very nearly like that on the "breakers," and the result is similar, the cotton being delivered in ribbons, but much purified by this sccond operation. It looks beautiful as it pours from
between the rollers at the end of the train of cards in an between the rollers at the end of the train of cards in an endless stream of snowy purity.
Now comes an operation which acts directly upon the ing or Herthe object of the different processes-difier sult, the cleaning and purifying the matcrial-has been to fit the cotton for its ultimate work. Now it is to be tested as to its tenacity. Machines called "drawing frames" do this work. The cotton in decp cylindrical cans is placed in front of the "drawing framcs." It gocs through rollers which de liver it to another serics of rollers, revolving at an accelerated speed, thus drawing out the fibers and depositing the cotton
in semi-cylindrical ribbons in other cans. in semi-cylindrical ribbons in other cans. 'This process is repeated on additional "drawing frames" until the cotton is The union of the ends of the ribbons, as they empty from the cans, is readily secured by rolling them together with the hands, the union being facilitated by a slight moisture on the fingers.
In this form of a slight, untwisted ribbon, it is placed at the "speeder" or the "jack" to be drawn and slightly twisted into " roving." The "speeder," of which there are scveral varietics, is only a modification of and an improve ment upon the "drawing frame." Neither the "drawing
frame" nor the "speeder" are intended to clean the cotton. that has been donc by the "picker" and the cards. The obthat has been donc by the "picker" and the cards. The ob-
ject of these is to straighten and thus elongate the fibers, and reduce the cotton in proper form for the spinning operation The " roving," when prepared for the " mulo" or the " spin ning frame," is a slightly twisted thread of cotton about the diameter of a straw, wound on bobbins adapted in form to the machines upon which it is to be spun.
All these preliminary processes must be watched with great care. If the lags on the cards are too high above the cylinders they do not properly cleanse the cotton, and specks and knots and dirt in varlous forms combine with the pro duct, and do not leave the material in all its future processe but show their injurious presence in the finished cloth or the thread, as the case may be. The carding department is by all odds the most important in a cotton factory. The card teeth may become dull and straightened, and it is a great responsibility to keep them in proper shape. At times they must be ground and inclined to the proper angle. 'I'lis is effected by the operation of a cylinder covered with emery re-
volving against the surface of the cylinders of the carding volving against the surface of the cylinders of the carding
machine. No less important are the results of the drawing machines. Changes of gears are provided for the sections of rollers which "draw" the cotton as it passes through, so that the weight of a given amount of cotton can be tested, and its proper "drawing" secured at any time, to insure a grade suited to the yarn that is to be spun. In 0
yarn.
of spinning into

STOVES Vs. GRATES---FRICIION NOT A FORCE.

I desire to give my voice very distinctly in favor of stoves All my considcrable practical experience, and all the science I can bring to bear, unequivocally urge me to the decision I have madc. Grates ought to be considered relics of the past at the best they are only compromises between the vast fireplaces of the last century, and the perfected plans for warming houses of the present day. The advocates of grates are generally either very old fogies whose sympathies cling to whatis antiquated and musty or misinformed sanitarians, whose not argument.
Stoves are more economical of fucl. This proposition, per haps, was never doubted, yet I find few people who know how great the saving actually is. At least ninc tenths of
the heat from a grate goes up the chimney: of what earthly use to mankind are these ninc tenths? I have recently made practical test at my own house. I have two rooms of equal size, and similar in other respects; but one is warmed by a grate, the other by a stove. I find that the stove does better
service than the grate with less than one fourth the fuel. A stove will generally pay its cost in a single scason. The saving in kindling wood is a small item, but in tho city it amounts to some dollars in the course of a winter, when a stove is used which keeps the firc all night. It is a common thing to have a stove running for wecks without ever light ing the fire.

The stove is more cleanly. All the coal, aslies, smoke and lust are snugly corked up in the stove, while the grate being open to the room, all of these have frequent chances of etting where they are not desired. The dirt from a grate Gght to be intolerable to the tidy housewife
Grates are more dangerous on account of fire, and require more attention and labor to operate them and keep them going. It is never safe. night or day, to leave the fire in a
grate. The labor of carrying coal and ashes is something formidable, especially when it is to be performed by women, and the grate is up several flights of stairs. In the use of
warming are more than quadrupled. The consumption of four times the amount of coal by the grate, involves more han four times the amount of ashes and dirt and labor and mpe
But the friends of the grate plume themselves on sanitar considerations: they claim that grates are needful for ven ilation. I have seen pcoplo who even pretended that there was danger of suffocation in rooms warmed by stoves. A few simple figures will show that the fundamental facts are not understood by these gentlemen. A robust man consumes bs. of oxygen in a day: 1 lb . of pure coal in burning con sumes $2 \frac{1}{4}$ lbs. oxygen : $2 \frac{1}{4}$ lbs. oxygen represent say 150 cubic evt of air. The pound of coal therefore, burning in a stove, withdraws from the room at least 150 cubic fect of air, whic f course is replaced by the air sucked infrom the outside. In fact, however, the burning pound of coul brings into the room two or three times that amount. Assume that each pound of coal brings into the room 300 cubic feet of fresh ir, is not that enough to expect or desire from it? Moreove in the cold scason, the difference between the external and inter nal density being greater than in summer, the ordinary venti lating currents are more vigorous and efficient, and would proably be sufficient without the assistance of the coal. I hea very little complaint about ventilation from those who warm their houses by steam, or even from the sanitarians on those ays when it is not quite cold enough to keep a fire, and yet it prudent to have the windows and doors closed. In this last case there is little provision for ventilation by nature or art.
On the other hand, I indict the grate as being dangerous to
health. It compels us to be in a gale of chilling air. On a ery cold day it roasts one part of our bodies, while another may be freezing. The grate is one of the fruitful sources of ths and the consequent diseases of the lungs
There are those who pretend that the grate is highly or amental, and that they like to look at the cheerful fire, etc These are questiona of taste and are not to be argued. For myself in all such cases I fall back on that homely old maxim: "Handsome is as handsome does."

riction not 1 FORCE

The new doctrine of the conservation and correlation of forces, which is now almost universally acceptod, makes sad havoc with many dogmas which have prevailed for cen turies. Thus our old notions of friction need complete re modelling to be made consistent with the present status of science. Wo now know that a force is never lost or de stroyed, and consequently there can be no such thing as a re sistance of force. All that can be done with acting force is to change its direction or to put it into the condition of potential encrgy.'
Friction does not destroy or diminish in the least the force which starts out from the prime mover. It simply changes the direction or form of the motion : the visible motion of the machine takes the form of heat, and this heat in amount is precisely equivalent to that motion which has disappeared to the eye. If friction may in any sense be considered a force t can be only from the fact of its changing the direction or form of other forces, and thus perhaps might be brought under the category of the lever and the other so-called mechanical powers. And if in this way we regard friction as a force, how shall we measure it?
Practically it is perhups sufficient to consider friction as simply indicating a leakage of force. A machine may be regarded as a device for conveying power from its source to a place where it is to be utilized, and friction a liole in the con-
ductor. But the force is thereby no more destroyed, than the ductor. But the force is thereby no m
water which leaks out of an aqueduct.

Razors--finow They Are Mado

The inquiry is sometimes made, "why docs one razor cost so much more than another?" Both blades are made of steel and there seems to be but little differenco in the cost of the liandles. Razors are usually made of the very best quality of cast steel, properly tilted, hammered, and rolled-worth in England about $\$ 300$ per ton, in gold. The forging of razors the making of table knives
"The bars or rods, as they come from the tilt and rolling mill, are about half an inch broad, and no thicker than sufficient for the back of the razor. The anvil on which the razor-blades are forged is rounded at the sides: by dexter ously working the blade on the rounded edge of the anvil, a concave surface is given to the sides, and the edge part thus made thinner, which saves the grinder a deal of labor. The blade having been cut off the bar, the tang is formed by drawing out the steel. The blade is then properly hardened and tempered. The last and most important process which the razor-blade has to undergo is that of grinding. The difference in the prices of blades, made all of them of the same material, is owing entirely to the circumstance that stones of much smaller diameter are used for grinding the ligher priced blades, and much more time and labor are given to the operation than is the case with the cheapersorts. Thus, the best kind of razor-blades are ground hollow on stones measuring one and seven-eighths to two inches in diameter. The two-shilling English razors are ground on seven-inch diameter stones; the common shilling razors, on ten-inch diameter stones. The difference in the labor is very considerable. A grinder will turn out per week from twenty to twenty-four dozen of the common shilling razors, whilst he can manage only about five dozen a week of the better, and only a couple of dozen of the best, sort.

The razors ground on a six-inch diameter stone are more suitable for hard, those ground on a two-inch diameter stone for soft, beards. The more common sorts are after grinding

The three-shilling blades are polished first' then drawn over a wood buff. Razor-blades are, in a great measure, ground on dry stones, which unfortunately causes the atoms of stone and steel to fiy about freely, to the great injury of the workmen, and imparts to the whole place where the operation is carried on a peculiar brownish-yellow hue. The minute particles of stone and metal fiying about are inhaled by the workmen, and, lodging in the lungs, produce asthma, consumption, and other fatal diseases. This most dangerous feature of the dry-grinding business has, however, been very considerably modified of late by the introduction of an apparatus which in a great measure protects the grinders from the dust fiying from the stones. This apparatus consists of a fan on the principle of a winnowing machine, with a fiue to fan on the principle of a winnowing machine, with a fiue to
take a way the dust from each of the stones in the room. The take away the dust from each of the stone
fan is worked, of course, by steam power.

The difference in the price between the three shilling and the dearer razors is simply in the handles with which they are fitted, the blades being exactly the same in every respect. There are horn handles, ebony handles, plain and carved ivory handles, silver and German silver handles, mother-of-pearl handles, etc. Some idea of the importance and extent of this branch of the cutlery business may be con ceived from the fact that some 1500 different patterns of razors are made.-England's Workshops.

GLEANINGS FROM THE POLYTECHNIC ASSOCIATION.

The regular meeting of this branch of the American In stitute, was held on Thursday evening, December 27th, Prof Tillman presiding.

THE EARTH A SOLID SPhere.

After some preliminary proceedings, Mr. Wood read an arti cle, arguing that the interior of the earth is in a solid state yet having an intensely high temperature. Mayer has shown that when a globe of matter is once in a molten condition, in cooling one common temperature must exist throughout the entire mass ; that from its nature one part can not possibly cool faster than another, and even if it were possible, we should look for the first signs of solidification at the center The formation of the earth's crust, inclosing a molten mass, is hence inadmissible. The temperature certainly increases as we go toward the earth's center, but the pressure becomes greater in an increased ratio, and this latter force prevents the interior matter from assuming the liquid form.

The statement accredited by the speaker to Mayer was disputed by several members, and the existence of molten lava coated with a crust of varying thickness was brought forward as a notable example to sustain this latter view After some further discussion the society listened to a pape by Prof. R. P. Stevens.

THE IMAGINARY SCHOOL OF PHLLOGORHFRS

Investigation, or the discovery of new facts, principles or truths, must always be conducted with a rigid adherence to truthful experiments. Standing on the borders of the known, we may patiently gather from the unknown, till from the accumulation we are enabled to classify, generalize, and rea son, and thus extend our bounds.
It is interesting to show from the past how men of so-called science have found it so much easier to call on their imagina tion for facts from which to form or support theories, than by continued labor to discover their actual existence.
According to the Phonician, Sanchoniathon, Chaos and a spirit were the authors of all things. The spirit fell in love with his own principles, hence a commisture, hence an agent capable of performing all we see in nature. The stoics supposed that moisture was the medium through which Deity acted on matter. Ab mare omnia was the belief of Ocken, and Prof Grimes must be ranked in this school, as by his theory the continents are born of the sea. Even Kepler speaks of an ani mal in the moon drawing the earth toward it. Leibnitz imagined nomads endowed with inward energy and spontaneity, and each a perfect world within itself. Herschel and Laplace call to their aid cosmic matter so attenuated as to fill all space. Aristotle and Epicurus taught that matter was eternal and the world without beginning. The Pantheists hold essentially the same views.

The imaginary school continued with unabated force till Bacon established his inductive philosophy, teaching to observe f

he nebular theory

Against the nebular hypothesis of Laplace, the following objections were urged. "The impossibility from knowon facts, of matter being so attenuated as to fill all space. It is doubtful that if so attenuated there would be many centers or even one center of gravity. If in this state and heated to so high a temperature, there could be no commingling of gases. We have no reason to suppose matter endowed with motion rather, that unless moved upon by an extraneous force it would remain quiescent. The primum mobile of the centrifugal and rotary forces is merely assumed. The hypothesis fails to account for the eccentric movement of Herschel and Neptune, the movement of Herschel's moons, the movements of the comets, and their unequal rapidity of motion. It is opposed to all our present knowledge of matter as now exist ing, and this we have reason to believe is but a reappearance of itself in successive phases or rounds of phenomena, mani fested by chemical changes and reactions.
the ocean currents.
The first statement made by Prof. Grimes was that the ocean primitively covered the globe. Physicists calculate that had this ever been true, the sea would have been from one to two miles deep, too deep to fortify his second assertion,
for currents do not abrade in deep water, hence the forming of vast continents by them is absurd. His second statement was that currents in this primitive ocean moved in six ellipses. We do not know the conditions attending the movement of currents in a shoreless ocean, and the mechanical problem proposed to account for this elliptical motion can not be shown by experiment. In the North Atlantic the current is exhausted at the 45 th degree of latitude: then how was land above this parallel formed? Finally, he has not cited one fact or illustration from geology that has the remotest application to his hypotheses.
[For the Solentific American.]
BOSTON INSTITUTE OF TECHNOLOGY

mprovement in telescopes and microscopes

At the second regular meeting of the Boston Institute of Technology, a miniature telescope was exhibited (the invention of Mr. Tolles, the celebrated maker of microscopes,) four inches long, with an object glass only seven tenths of an inch in diameter, and magnifying thirteen diameters. This was proved equal in power to ordinary telescopes of two inche diameter of object glass and four feet long. In this small in strument the satellites of Jupiter and similar astronomical objects had been seen. This invention tends to diminish by one half the cost of telescopes, by diminishing the size of the lenses, Mr. Tolles had also invented a method of throwing light upon an opaque object when under examination unde the microscope, by means of a rectangular prism introduced into the side of the instrument just above the lower glass, so that the light is thrown directly down upon the object ; a long sought for improvement in the examination of opaque objects.

NOVEL PLAN FOR FIRE-PROOF SAFES.

At a meeting of the Massachusetts Institute of Technology, in December, 1866, Rev. Rufus S. Sanborn, of Wisconsin exhibited and explained a fire-proof safe invented by himself which steam acts as the preserving medium.
The nature of this invention consists in placing one or more boxes, or unfilled safes, one within the other, the outside case being filled or otherwise in the ordinary way, and these inner boxes detachedfrom each other and the outside case by means of fianges or spurs, so as to form air chambers all around said inside box or boxes; and into these air chambers are inserted metallic vessels for holding water, with simple steam valves which will be opened so as to allow the steam to escape when the heat of the inside of the safe shall become sufficient for hat purpose.
This steam saturates the air chambers, and its surplus es capes by the doors, so as to keep the temperature of the inside of the safe about that of boiling water, in which temper ature none of the papers of the inside box can either bur or char so long as any steam can be maintained.
By a peculiar arrangement of 9 succession of these vessels, ne is exhausted after another, and thus for a long time there is the most complete protection in addition to the other protection which the filling and air chambers afford. In an ordinary sized safe there would be about fifteen gallons of water which, under the arrangement described, would require a very long time for its conversion into steam and its total escape by the door.
A trial has since been made, of six hours' duration, in a fire so intense as to melt the knobs from the door, the safe being kept red hot for over five hours. In the trial, a safe of one of the best makers, on being opened after three hours' exposure, presented all the interior wood work on fire and its content completely destroyed: on the contrary, the Sanborn safe showed its contents entirely uninjured, and its steam would have formed a perfect protection for six times, at least, the time of the exposure. An account of the trial may be found in the Boston Advertiser of Dec. 24, 1860

A NEW EARTH EXCAVATOR

Mr. B. A. Oliver, of Bunker Hill, Ml., has sent us a model of what appears to be an excellent machine for cutting ditches canals, and railways, and also for grading roads, etc. It can be very easily described, being simple in construction and operation. A platform supports an upright frame, in which re volves a disc, carrying on its outer circumference a number of scoops closed at one end. In front of the machine are two
plows with side attachments for cutting down the bank which may be fixed to cut a perpendicular wall or one inclined at an angle. The shape of the plow shares is such that the earth loosened is thrown directly in the path of the revolving scoops. These take the earth up and carry it over the top of the disk, discharging it at the rear in two windrows, one on each side of the excavation. This division of the debris is secured by a partition passing through each scoop in the direc tion of its rotation, and also by doors on the sides of the scoop which, while in the act of digging, are closed automatically by side fixtures like cams, and
proper position by the same means
The large central disk to which these scoops are affixed has either spokes nor hub, but is kept in place and rotated in a vertical plane by means of two friction wheels. Inside, the disk is furnished with segments of cogs in which a cog-wheel meshes, which is revolved by suitable connections with the
main axle. The driving power is the supporting wheels of main axle. The driving power is the supporting wheels of the apparatus, which have projecting lugs on their outer per ipheries. The machine is drawn by horses or oxen, attached so that the animals walk on each side of the excavation. Direction is given to
The principle of the machine seems to be correct, and Mr in iso far as can be judged by his model-
to procure some party to assist him in taking out his patents and introducing the machine to the public, and is willing to cede a portion of his rights as inventor, for the accommoda tion.

How to Straighten Hardoned Steel.
To straighten steel after it has been hardened is a great annoyance to the machinist. It is one thing to finish a tool or mechanical appendage requiring hardening, and another to bring it out, hardened as it should be, right. Manya drill, turning tool, tap, etc., is ruined simply for want of knowledge o this art. To be sure, the bulk of the responsibility rests with the temperer or hardener ; but what they fail in may in many cases be remedied by a knowledge of simple fact.
To straighten a piece of steel already hardened and tem pered, heat it lightly, not enough to draw the temper, and you may straighten it even on an anvil, if not really dead cold, by a hammer; but it is best to straighten it between the center of a lathe, if a turned article, or on a block of wood with a mallet, where the article, cold, would break like glass. Warm it will yield readily to such blows as are said to kill the devi easy.

The Gatling Gun

This destructive piece of field ordnance, of which we gave description and engraving in the last number of the Scien tific American, with an extract from the emphatic test monial of the Examining Board to its efficiency, has been adopted by the U. S. Government, and an order for one hun ared of the deadly machines for the army, is now being filled at Colt's Armory, Hartford.

Planina Curved Surfaces.-Hitherto, it has been found mpossible to adapt the ordinary planing machines for curv linear planing, but at length this problem has been solved by Mr. Middleton, the head of the machinery department in Chatham dockyard, who has succceded in planing the whole of the curves and angular surfaces of the iron stem-piece for the Monarch, with no other appliances than the common planing machine.-Engineer.
[Links for locomotive valve gear have been planed for year in our machine shops on common planers, and by half a dozen different methods. It is no trouble at all. A common way is to take the vertical screw out of the tool holder, and at tach a rod to the slide, with the bottom of said rod working in a curve of the required radius formed in a piece bolted to the bed of the planer.--EDs

The shop is getting to be only a primary school for me chanics. Time was when to be a first-class workman capable of handling the file, or running the lathe or planer or better still "doing a job"-was the hight of a mechanic' aspirations. All is changed. The mechanic, to be worthy of the name, must be more than a mechanical workman. He must understand the principles of his business and must be capable of not only doing a job, but preparing it and direct ing it. The world needs scientific mechanics as well as me chanical mechanics.

Lighting Cigars. - The pyrophorus used for lighting cigars is a highly combustible powder, requiring only expos ure to air and slight warmth to ignite. It is preserved in a small tin case with a narrow orifice, from which a little is dropped on the end of the cigar, and ignited by the aid of the breath. It seems to be even more dangerous to property than he cigar itself.
Laundry Gloss.-The beautiful finish of linen got up for sale is imparted by pressure and friction upon curved surface of hard pasteboard. Try a true cylinder, or convex table veneered with the best quality of press board, such as print ers use, instead of the usual domestic "ironing sheet."

Hot and Cold Blast.-An inquiry instituted by the Brit sh Association has determined the ratio of strength in hot blast iron as 1,024.8, and of power to sustain impact as $1,226.3$, to 1,000 in cold-blast iron.
Syracuse papers say, that the water in the fire engines o that city is kept constantly hot by jets of gas which ar brought into contact with the boilers. It is said that ga costs in Syracuse only a dollar per thousand.
Mr. Spiller, of the Woolwich arsenal, has remarked that the barrels of the rifles used by the volunteers there ar strongly magnetic. The range at which they are fired is sit uated due north and south.
a Cosmopolitan bank, whose checks will be everywhere at par or premium is to be established at London, with
ane branches in the leading cities of the world. This will do away with bills of exchange.

A Locomotive exploded lately at Rochester under a pres Are of ninety pounds, and was thrown acress the street into a saloon without doing much damage.

An excellent bronze for small castings may be made by using together in a closed crucible ninety-five parts of cop per by weight, and thirty-six parts of tin

Forty tons of rust were taken out of the Menai tubular bridge at one thorough cleaning.

It has been calculated that 96,000 pounds of candles are used weekly in the mines of Cornwall.
M. Pisani proved the presence of soluble hyposulphates in the aerolite which fell at Orgueil.

