Frank W. Sterry, Morrisania, N. Y.-This invention relates to a nove com-
pound, whereby fine cut or any other chewing tobacco is swectened and col ored without any dangerous ingredients.
Scaffold Bracert.-Charles Eddy, Grass Lake, Mich.-Thts invention consists in providing a bracket designed for scaffolds in shingling or roofing uilding
Revolving Hay Elevator.-Matthew Mitchell, Crown Point, hid.-This
invention consists in the construction of a derrick in such a form as to admit invention consists fn the construction of a derrick in such a form as to admit
itsstanding near a haystack, and a revolving upright shaft and levers ar itsstanding near a haystack, and a revolving upright shaft and levers ar-
ranged in such a manner that hay can be elevated easily and cxpeditiously. Device for Holding the Slatis of Window blands.-Clarles R. Francis, Newark, N.J.-This invention consists in the employment of a slotted passes and is secured to a window bind, in such a manner that the slats of the blind may be held in any desired position.
Reasier.-Wiliam Burlingame, Exeter, N. H.--This invention consists in uniting and casting steel cutters with the body of a reamer, so unat a large quantity of steel may be saved; also large size taps may be cast in with the
Ulreadsofsteel upon the outside.
FAstening SLeigh Bells.-J. H. Abell, East Hampton, Conn.-Thisin vention consists in the arrangement of a T-shaped, duuble hook spring catch, in
combination with a sleigh bell, provided with a slut or mortise to receive the hook-shaped endsof the spring catch, in such a manner that by passing the
hooksof the catch through the strap or otlur material to wlich hebell is to hookshaped ene catch through the strap or othlur material to which hlebell is to
hoo factencd, and forcing them into the slot of the bell, they spring apart over
be be fastened, and forcing them into the slot of the bell, they spring
the inncr cdges of sald slot, and the bell is firmly held in its placc.
Safety attacement to Carriagrs.-Claude Ducrux, New York City.This invention relates to a new device, whereby a wagon can be instantan-
cously stopped and the horse detached therefrom in case the latter should try to run away.
Cotron SCRAPER.--Nicholas Gotten, Union Depot, Tenn.-This invention
consistsin constructing a cotton scraper in such a manner that the scraper may be adjusted to dififerent angles and depths upon the framc as the nature f the work may requir
Manofacture and Tinning of Lead Pipes.--Frederick Bennett, Watford, England.-This inven tion applies to leadpipes manufactured by hydrau-
lic pressure, and it consists of not only an improved process of manufacturing lic pressure, and it consists of not only an improved process of manufacturing,
lead and composition pipes, but likewise of a new mode of tinning, silver tinning, or coating lead pipes with other non-corrosive metal or composition,
Joint for Pipes.-James Bowden, New York City.-This invention relates to a joint for lead pipes or pipes of any other description, which is composed of
two tapering or wedge-shaped thimbles, which are split or made in sections, in combination with a clamping nut screwed on the end of the inncr thimble, insuch a manner that w hen the thimbles are properly arranged on the end of a tube and the nut is screwed up, the inner thimble is frmly clamped to the
pipe, and a unlon coupling, or a coupling of any other description, can be pipe, and a unlon coupling, or a coupling of any other description, can be
readily secured to the end of said inner thimble, and two pieces oflead pipe can be united without soldering or "wiping."
Procress for Glazing Paper.-Frederlck Beck, New York City.--This in-
vention consistsin treating paper with stearic acid by applying the acid to it vention consistsin treating paper with stearic acid by applying the acid to it
and then exposing it to the action of friction surfaces, in such a manner that the surface of the paper is coated with a thin layer of said acid, Imparting to it fine gloss, and rendering it soft, white, and impervlous to wat
Paper File.-Joseph Fleischl, New York City.-Thisinvention relates to a
paper fle which can be used for one s ngle paper or for a number of paper fle which can be used for one s ngle paper or for a number of papers.
For the purpose of securing a single paper a segmental cylinder is slipped For the purpose of securing a single paper a segmental cylinder is slipped
over the side bar of the paper flle and over the paper, so as to hold the paper without injuring it in the least. If two or more papers are to be fled in the
paper fle, adjustable spring clamps are secured to the side bar of the paper paper flle, adjustable spring clamps are secured to the side bar of the paper
fle, and the papers to be fled are held between the springs an'l the flattcned fle, and the papers
surface of sald bar.
WINDow LAt TCH.-Ernst T, Hof mann, Pouglikeepsie, N. Y.-Tliis invention
consists in the arrangement of aspring stop or catch in combination with an consists in the arrangement ofa spring stop or catch in combination with an
ordinary revolving latch, in such a manner that when the said latch is closed, ordinary revolving latch, in such a mander that when the sald latch is clos
it Is securely locked by the spring stop, and it cannot be opened or for
back until said stop or catch is depressed or made to relcease thc latch.
Lock.-Rudolph Vollschwitz, New York Clty.-This invention relates to a
lock, the mechanism of which isinclosed in a cylindrical case, said mechanism belng composed of three (more or less) tumblers, which are provided with slots to admit the key, so that by turning said key the heads of the tumblers
arrange themselvesin the proper position to allow the tumbler to move in or out. An elastic pad or spring which bears on the ends of sald tumblers, has a tendency to keep the same in such a position that their slots coincide to admit the key, and that their heads prevent the bolt from moving, the whole me-
chanism being so arranged thatit takes but little room, and that a safe lock, chanism being so arranged thatit takes but little room, and that a safe lock,
with a smanl and convenient key, can be produced at a comparatively small witha
Machine for Presbing Peat.-N. H. Barber; New York City.-This invenion rclates to a peat machine composed of a revolving annular cylinder, pro
Ided with a number of holes and with a series of plungers which revolve with Ided with a number of holes and with a series of plungers which revolve with
the cylinder, and move back and forth in the holes by the action of cams, which draw them out to receive the feed and forceethem in at the proper t
for the purpose of compressing the peat while the cylinder is in motion. or the purpose of compressing the peat while the cylinder is in motion.
Manufacture of Stelel-headrd rails,-L. M. Hart, Troy, N. Y.-This
nvention consists, frst, in uniting the steelslab with the slab of iron by weldnvention consists, first, in uniting the steel lab with the slab of iron by weld-
ing or other means, previous to the operation of rolling, in such a manner ing or other means, previous to the operation of roling, is such a manne
that the steel is prevented from scallngoti' when the rail is ready. It consists
second, in securing the steel slab to the pile by screws or hook bolts, or other means, in such a mannert that the steel is preveated from curling during the operation of rolling, and steel-headed rails can be produced
able, and from which the steel is not liable to separate itself.
Refining Oil, etc.-Max H. Kruger, New York City.-This invention re lates to an apparatus which is intended for deodorizing and reffining petro-
leum and other hydrocarbon liquids. It consists of a series of filters which are filled with powdered charcoal or other suitable material, and hung on are filed with powdered charcoal or other suitable material, and hung on
rods in the interior of a chamber or box which can be filled with steam, in such a manner that the petroleum or other hydrocarbon liguid, while passing through the filtering material, are kept at a sufficiently high temperature to prevent the resinous parts in sald eil from choking up the filters, and thic
operation of filterigg can be conducted with easc and facility.
peration of filtering can be conducted with easc and facility
Manufacture of Wool from Pine leates.-Adolphe Roguc, Brire,
France.-This invention relates to a new mode of producing from pine leaves Trance.-This invention relates to a new mode of producing from pine leave
a sort of hygienic wool, capable of replacing to some extent common wool or hair in their various, applications, and particularly ft to be employell in cer-
tuin diseases such as rhcumatism, gout, pulmonic affections, neuyalgia, and tain dise
so forth.
Centering Tool--Nathan Puckett, Terre Haute, Ind.--This invention relates to a novel and convenient devicef ordrllling a center hole accu
a baro iron or any piece of timber to be turned in a turning lathe.

Rallroad Freigit Cars.-Richard Eaton, Montreal, Canada.-This improvement relates to the construction of railrondfreight cars, a
for increasing largely the capacity of a carfor carrying freight.
rallroad Car erakes.-Charles Bemis, Mishawaka, Md.-This inventio cars.
Spring Cropper.-Edward Powell,Spring, Penn.-This improved crupper is provided with a spring supporter which exerts a constantupward pressure
under the tail of the horse so as to induce a habit of carrying the tall in a higher and more graceful position.
Suws.-Asa Bee, White Oak, West Va. (patented January 1st, 1867).-This
invention relates to the application of saw, for the purpose of removing the roughness or projecting fibre from the face ne the plank as the saw passes through the kert; and the improvement
consists in grooving the cutting edge of the plane-iron, the better to adapt it consists in grooving the cutting edge of the plane-iron, the better to adapt it
to discharge the cuttings which it removes from the wood. to s la
Spring Holder for Wiping Cloxiss.-Patented January 1st, 1867.-Henr
Johnson, Chicago, Mll-This invention consists of an arrangement of spring
fingers, adapted to be furnished with a wet or dry cloth, to be used in cleans
lug exterior or interior surfaces, dislies, bottles, lamp-clifmneys, and other hollow articles, especially those diflicult to be reaghed hy the hand and o varying interior diameter
Cin.tivator.-J. C. Hofieditz, Mercersburg, Penn. - The invention con sists of a cultivator or marker, having arjustalle spring staudards and
liandle, and will shovels, adapted to dificrent kinds of work, or reunev able tor the purpose of adapting the machine to a diff
"Riglts for all the States except 1 'conssylvania for sale."
Rights for all the States except I'ennsylvania for sale."
Coltivaton Toote.J. C. Hofienty, Mercerburs
pivoted in the hanger by a bolt, and is restrained from vibration standard pinn, which breaks when the share comes in collision with an imnovable ob stacle, the standard being replaced In position, after passing the obstacle, an a new pin inserted. "Rights for all the States except Pennesylvania for sale."
Burglar alarm-aun.-Peter Sinsher, versailles, Ohio.- This in vention re tranged to to be fired sound gun, havis in

ayainst burglars.

Self-lubrioating Atrachment ror Journals of machinery.-Gcorge lubricating or oiling apparatus for journals of maclinery, and consists in at taching an oll-cup to the journal-box in such manner that any excess of oil
nlows back into the oilcup froun the journal-box. Thus the journal is kept Hlows back into the oilcup froun the journal-box. Thus the journal is k
coustantly lubricalat; lieating is prevented and therc is no waste of oil. Cotron-olenning and Relinting Machine.-Robert J. Clay, New York wool which las been damaged by matting the flbres together and becouing foul with dirt or any extraneous substance.
Truss for Hernis.-Jolin A. W. Justi, Savannah, Ga.-This invention con sists in the peccliar conformation of the pad-plate, which is not a simple flat
spring, but is curved and archedin such manner that the pads may be fitted spring, but is curved and archedin such manner that the pads may be fitted
accurately against the person of the patient, securing ease and comfort in the accurately against the p
movements of the body
Fire-Grate for Stean Boller.--Richarl Eaton, Lee, England.-Tuis in
vention relates to vention relates to an improved mode of constructing fre-grates and furnace
for locomotive and other steam boilers, to burn wood or peat, and consists in the arrangement of grate-bars, which overlap and underlap eacch otlier in steps or terraces, with horizontal divisions between the bars, directing the air haterally towards the sides of the fire-box.
Street Car Heater.-John Gibson, albany, n. Y.-The object of this in
vention is to warm street cars; it is accomplighed by vention is to warm street cars: it is accomplished by placing one or more
stoves under the seat, and conducting the smoke under tlic flooring and up to stoves under the seat, and conducting the smoke under the flioring and up to
the roof, where it escapes without givmg any anno yance, after radiating it the roof, where it escapes without givmg any a
heat into the car in its passage through the pipe.
Valves.-Samnel J. Peet, New York City.-This invention relates to an im provement in valves for steam, gas, air, water, and all other fluids, where valves, cocks, faucets, gates or traps are used, and consists in a pair of metal
discs or plates fitted in a box or shell, in such a manner as to close against the scats by being spread apart with a conical wedge, or a straight wedge turning ona swi
wedge.
Street rallroad Cars.-Joseph S. Fairfax, Wheeling, w. Va.-This in vention relates to improvements in a street railroad car, the principal objec
of which is to enable the car to turn curves easily, so that it may be stoppe of which is to enable the car to turn curves easily, so that it
on lice cuirve If desired, and be startcd again without diffculty
Spore-driving Bench-F. m. Lemmon, Shelby ville, Ill.-This invention
relates to a new and improved machine for driving spokes in wagon-wheel relates to a new and improved machine for driving spokes in wagon-whee hubs, and consists in a bench having a hub-clamping device by which the
hub is firmly secured to the bench, and an adjustable rest for holding the spokes as thcy are driven, and also a binding device for holding the spoke down snug in the sald rest, the wh
maclinc for the purpose mentioncd.
Cane Stripper.-Melcher Mellinger, Dayton, Ohio.-This invention con sists in the employment of two or more spring cutters which with a stationary
plate form the device for cutting off the heads of the canes and with the
rebt for Torning Lathes.--Henry K. Smith, Norwich, Conn.-This in ention consists principally in a novel arrangement of gearing where by the to move elther toward the right or left on the lathe bed and also in a novel manner of constructin
MACHINE For Curt
Mafirne for Cuttina Files.-Isaac Goodspeed, Norwich, Conn.-This Invention relates to a new and improved machine for cutting fles, and has for
its object simplicity of construction and the obtalning of all the advantage attending more expensive and pretentious machines hitherto devised for the purpose
Car Couphing.-James McLaughlin, Duncannon, Pa.-This invention re
lates to a ncw and tmprove:t car coupling of that class which are self conncct ing or sclf-coupling, and it consists in a novel construction and arrangement of parts, whereby a very simple and efficient car coupling of the class spec iffed is obtained.
Combination of a Square, Level, bevel and Plumb.-G. L. Chamberin, a scquare, level, bevel and plumb, whereby the several tools above specific are combinedin one and eitherrendered capable of being used by a very simple adjustment of a part partaining to the device
Shutrer and blind Fastening.--Robert Hutton, Brooklyn, N. Y.-This
invention consists of a fastening constructed and applied to a window shut ter or bllnd, in such a manner as to admit of the shutter or blind being se cured in a more or less open state as desired, and also admit of being readily
manipulated to secure the shutter or blind in any position between a fally open and nearly a closed state.
Blaceina box Holder.-George w. Taylor, springfield, Vt.-Tlus in ven tion relates to a new and improved device for holding blacking bo xes, so that the hands of a person in blacking boots or shoes will not be sotled in rubbing
the brush over the moistened blacking in the box. The device also admit ting of the box being suspended on a nail or hook convenjent for use at any time.
Machine for Making Eyelets.--Levi Richards, Providence, r. I.-This invention relates to a ne w and improved machine ror makilng metallic cyclets,
and It consists of a cutter and dics arrangcd and operated in sucl a manne that they will cut the plate in circular form and swage it into cup or tube cup or tube from the dies above mentioned, and conveying it to a second pair of dies operating in connection with a puncl, and in such manner that the
cup or tube, formed by the first pair of dies, will be swaged into proper formi cup or tube, formed by the first pair of dies,
and punched, so ns to complete the cyclect.

Cultivator--A. P. Hanımon, J. If. Lincoln, S. Lhicolu, T. W. Hammon, Montfort, Wis.- Tlis liuvention relates to a new and iumproved device for cul Uvating plant; grown in hills or drills, and it relates to a new and inproved
manner of arrangiug the plows, wherely the same are made to penctrate the earth at a uniform den th whether the device is passing over horizontallor in clined ground, and it also consists in a novel menns for gniding the machin
wlicreby the plows may, with the greatest facility be made to conform to thi whereby the plows may, with the
sinuositics of the rows of plants.
Lock.-E. L. Gaylord, Litchfeld, Conn.-This invention more especially applies to drawer locks and small locks generally which are placed upo
parts adjacent to each other, such, forinstance, as the drawers of a bureau, the small doors of a secretary, etc., and which should be provided with diffcrent keys so that one key cannot unlock more than one lock.
Hoisting Tackie.-J. C. Pierce, New Philadelphia, Ohio.-This invention instance, as hay from wagons into the bays of barns, goods in warehouses admit of the articles being hoisted and also conveycd, when in an elcyate

Grindina Mill.- -Gilbert D. Jones, New York City.-This invention relate
a new and improved grinding mill, of the kind commonly termed the Cbiln mili, and it consistsin having the peripheries of whecls or rollers V.form, and the bed on which the whecls or rollers work provided with an
annular V-groove for the peripherles of the wheels or rollers to work or ruy in. The invention also consists in the employment or use of scrapers ap plicd to the maciinc in such a manner that by a very simple adjustment the material to be ground may be kept within the path of the wheels or roller nd when sulleciently g:ound discharged from the bed plate.
Hollow AUGER. - Joseph Ward, New York City.-This invention relates to new and improvedhollow aure., forcutting tenons on the ends of spokes,
 object of the invention is to obtain an implement for the parpose specified which will be capable of heing adapted to cut tenons of different diameter as may be required.

Bussurs to Currejpondents.

C. L. K., of Ill., asks :-Will there be any loss of water from a stcam boiler with 75 lbs. pressure, supplying by means of a coll, steam for
heating cold water $\boldsymbol{\epsilon}$ syrup, if the discharge of the coil is turncd back to the boiler: and will the flow be kept up? We reply: If the coll is placed at a higher elevation than the boiler, the condensed water will be forced back to the water space of the boiler by the steam pressure, but not other
wise, as gravitation as well as the friction of the pipe must be overcome. E. R. B., of N. Y., inquires why, when repeated hardening of steel have cracked the metal, heating it to a low red and plunging in of steel abstracts the carbon and tends to return the steel to the condition of steel abstracts
A. P. HI. D., of Wis.-There is no instrument corresponding in attractive power to a magnet, which lias any value in discovering the
precious metals. The "divining rod" is a relic of superstition and ignor W. L. G., of N. Y., A. E., of Wis., ant IR. J. S. of O., sugges D., of Conn. (page 406, Vol. xV.) has not taken care to remove so con fined have been the source of much annoyance. They are pretty sure to be found when the water is first let into an undulating pipe. The sure to be found when the water is frst let into an undulating pipe. The
best way to remove them, is to close the delivery end of the pipe, and make small holes atthe topsoftheangles: as soon as the water flows ou
of theholes they are plugged up. If any of the angles are higher than the of theholes they are plugged up. If any of the angles are higher than the
source, a suction pumpmust be used for them. When the water is highly source, a suction pumpmust be used for them. When the water is highl
aerated, as is orten the case with spring water the upper bends aerated, as is often the case with spring water, the upper bends of the pipe
Bhould be provided with air chambers, each having a stopcock. This subthould be provided with air chambers, each having a stopcock. This sub-
ject bas been before discussed in this paper, and we took it forgranted in H. W. II. of - .-Any person may call an article patented, or unpatented, in an advertisement. The law imposes a specific penalty
only, when an article is stamped patented upon which no patent exists. If any person were to suffer by the deceptive advertisement he would have a remedy by writ at common law.
F. N. B., of Wis.-The bubble of air is to be removed from your barometer by inverting the tubeand then dexterously moving it till pletelyfill the well with distilled mercury and cork it up that the mercur may not be spilled. But if the instrument is valuable you will do better to
mend it to the man
F. S., of O.-The mineral you send is iron pyrites or sulphide
O. Then of iron. It is sometimes called fool'sgold, and in small quantities it i W. L. O., of Pa.-We know of no treatise on the gaging of casks. Tbere is the gaging rod to be obtained at any tool store, which can
be procured with directions for use. The contents of a cask can be apbe procured with directions for use. The contents of a cask can be ap-
proximately ascertained by measuring the various dimensions of the vessel and then performing a simple arthmetical calculation explained in almost
. Q. E., of Mass., asks how the wheels of a car rigidly se cured to a common axlecan turn a curve the inner rail of which is twenty
fect shorter than the outer, without slipping. We answer, wede not know. we never supposed anybody thought thcy nid. It is evident that either the We never supposed anybody thouglt thcy nid
outer wheel must drag or the inner one slip.
C. Oswego, N. Y.-Common gum copal varnish will preserve gun barrelsfrom rust. A little boiled linsecd oil may be mixed with it , and

Pusimes aud wersuat

The charge for insertoon under this head is 50 cents ane

Fclix W. Robertson, of Galveston, 'Texas, wants to know whure he can obtaina quick-setting and durable cement for cisterns. He
builds cisterns of shells, sand, and Rosendale cement, which in the place . T. J., 81 S. 3d street, Reading, Pa., wants descriptive cir culars of spinning gins, hand looms, etc., for farm use. Also powder
drying macline, machine formaking cigarettes, and most approved wind drying
mills.
H. L.

See back numbers of Scientlific American as to E. H. Bell, Antestown, Pa., desires to know where he can ob The address of Mr. Rogers, the patentce of the "Naphtha Lamp, is wanted by Geo. II. Baker, Morencl, Mich. B. and C., Canada, desire to know where they can obtain ma clinery for making soldd-head pins. Also who owns the patent for tinning xco. P. Pcck, Evansville, Ind., wishes to communicato with the agents or owners of Rodgers's Patent Gas Lamp, or Burner.
Where can I get a Patent Chimney Jack," asks E. T. Bar num, Topeka, Kansas.
J. R. Lente, Blooming Grove, N. Y., desires to communjeate with parties who drill wells throughsadaton
Makers of Wells's Patent Circular Saws are requested to communicatewith J. A. Demuth, Forest City., Mo.

Inventions Patented in England by Americans.

PROUISIONAL PROTECTION FOR SIX MONTH: 3,007.-Floor Covering.-James म. Spencer, Philadelphia, Pa. Nov. 16, 1866

Improved Grinding Mill and Brick Press.
The advantages claimed for the machine herewith represent ed, are that it is equally well adapted for both common and er tempers and can be worked by hand, steam, or horse pow rapidity.

Fig. 1, shows a perspective view, and Fig. 2 a view of the

it, and on trial has made 6,300 bricks in one hour, and is ead work ordinarily at the rate of from 35,000 to 40,000 brick per day of ten hours. It is claimed that the pressed bricks made by it are superior to those made in the usual way. The action of the plunger leaves no vacuum in the press box, the clay filling the box instantly, as soon as the plunger is withdrawn. It was patented by J. A. Lafler, Jan. 6, 1863. For in formation relative to rights to use, or for territory, address the patentee at Albion, O the patentee at
leans Co., N. Y.

Magnesium.

The usefulness of magnesium as a re-agent, is of pe culiar importance. Iron, zinc and cobalt are precipitated from their oxides in a lighhly magnetic and brilliant condi tion, by immersing magnesium in an acidulated solution of those ores. Water is
ployees of the Novelty Works alone. Once in four months a percentage-the profits over expenses-is divided among the
purchasers in a rate proportioned $t \rightarrow$ the amount of their purchases. A divide proportioner was made Dec. 22d, 1866. The enterprise has proved to be eminently successful, giving complete satisfaction to all, and enabling the workmen to complete satisfaction to all, and enabling the workmen to obtain their household necessaries and comforts at the lowest market prices, in addition to receiving a percentage on their purchases. In the article referred to we fully described the modus operandi, but if the employees of other establishments desire further information, with a view of starting a similar store, we refer them to John L. Smith, Secretary of the Association, at the Novelty Works.

Sagging of Grate Bars.

Alluding to the complaint of one of our correspondents, in our issue of Dec. 15th, that his grate burs bent and sagged to a great extent, R. J. S., of Ohio, remarks that it is customary to rest the ends of the bars on a support having a face at righ ngles to the bearings, so that if the grate bars should expand in length the ends would thrust against the face and tend to bush out the furnace front or push in the bridge wall. Gen-

LAFLER'S GRINDING MILL AND BRICK PRESS.
under side exhibiting the working parts of the press. The mill can be built either of wood or iron, or a combination of the two. Standing vertically in the center is a shaft armed planes from projecting radially from it in regu hotom row consists of much broader knives, which act as scrapers. All these knives have their cutting edges turned upward at an angle of about thirty degrees, gradually forcing the clay downward while finely cutting and mixing it.
The press box, A, is secured rigidly to the under side of the frame. It is a box of metal, having enclosed sides and ends and open at the top and bottom, the aperture at the top com-
municating with the interior of the mill. A slide partly seen municating with the interior of the mill. A slide partly seen at B, Fig. 2, when the press box is filled, advances across the top of the box on slides, and closes communication between the box and the mill. Fitting into the press-box is a clodcrusher or plunger, open at top and bottom, and divided by partitions to form the bricks. This plunger is secured to the frame, C, which is pivoted at D, and has a vertical motion by means of the shaft, E , and chains, F , in combination with the weight, G, (shown in Fig. 1). The upright lever, H, in the front of the machine, same figure, operates the segment, I which advances the follower, J , and pushes the filled molds to the front of the frame.

The operation is as follows: A bottom board, with pallets for each brick, is placed upon rollers in the frame, \mathbf{C}, the press box being filled with clay, when the slide, B, moves forward and makes a base for the follower or plunger, which is forced up into the box, pressing the clay into five separate bricks The frame, C, is then lowered, and the slide, B, receded, the bricks by the downward action of the plunger are deposited upon the pallet boards and pushed forward by the fullower, J. They may then be removed and set on edge in hakes or on shelving for drying. For nice pressed bricks, a band-wheel with radial levers may be placed upon the shaft, E , for raising the frame, C , and any amount of pressure required be exerted. For ordinary bricks the machine works automatically, the frame being raised by the rod and chain, K , attached to the lifting shaft, E. This chain and shaft are worked by the bevel gears at the top of the mill, the connection being made by a clutcl ${ }^{2}$ and lever, L, the action of the slide, B, being controlled and regulated by the gears and levers at the bottom of the mill, seen in Fig. 2 .
The plunger is sustained in position by rubber springs sur rounding bolts at each end of the box, A. This secures against the breaking of this portion of the machine if any foreign substances should by accident get into the clay. The hight of the frame, \mathbf{C}, can be regulated by a shaft under its front end, having an eccentric cam secured to each end of it. The change from the conditions required for pressed brick to those for common brick can be made in a few minutes. The machine is lighly recommended by those who bave used
y, in consequence of the eager affinity of this metal for oxygen, by simply dissolving in the liqnid in which it is in mersed, a little sea salt, sal ammoniac, or acid of any kind Gold, sil\%er, platinum, bismuth, tin, mercury, copper, lead cadmium, thalium, and other metals, are also precipitated by magnesium, which is therefore valuable for the detection of mineral poisons : but the metallic bases of arsenic and antimony are not precipitated from their acid solution, because they combine instantly with the hydrogen evolved. As an element of the galvanic battery, and an illuminating agent, these properties of magnesium render it lighly effective. A grain and a half of magnesium, with a similar plate of copper, immersed in acidulated water in a glass tube, is sufficien to keep a small electro-magnetic apparatus in motion for nearly ten minutes, and to produce an illuminating jet about four inches in length.

Small Inventions.

In a recent trial in England, Mr. Nasmyth made the following observations on the influence of a small modification on the success of greater inventions. He remarked that "One of the most successful inventions of the day is that, in sugar refining, of the application of the apparatus which used to be applied fordrying cloth and getting rid of water from textile fabrics. It was a patent of Mr. Bessemer's for getting rid of the molasses from sugar, by the rapid whirling of this vessel. It was found that the outside of the vessel being covered with wire cloth so as to allow the molasses to escape and yet retain the sugar, the molasses gathere on the outside of the wire coth and collected there in a coating. After some of the most ingenious minds had been applied to it, and one of the most ingenious men of the day Mr. Bessemer, the whole thing ingenious men of account of the simple difficulty that remained a difficulty which stood for some years. But another inventive difficulty which stood by some years. But another inventive man suggested that by blowing a small stream of steam on on the outside of the wire cloth, it would just so much dilute the treacle as to allow the treacle to be operated upon by centrifugal action. That small jet of steam made the invention entirely successful. It was one of those triffing little things that it surprises one it should not have heen thought of, but it sometimes requires the most prafound philosophers to do these things. It was thas with Watt's separate condenser."

A Workingmen's Supply Association.

In No. 20 of Vol. XIV. of the Scientific American we de scribed the plan of a supply store established by the employees of the Novelty Iron Works, in this city. We now have be fore us the annual report, which presents u very gratifying exhibit. The goods-articles in common use for familiesare bought by wholesale and sold at a retail price to the em-
erally, however, the heated bars sag and remain bent. This face against the ends of the bars affords a lodgment for ashes in cleaning out the furnace when cold, which becomes compressed as the bars expand by heat, and offers a fulcrum for them to act against, although their ends may not reach the face of the cross bar. Our correspondent thinks the thrus faces of the supporting lars should be discarded.

California Silk Culture

A California letter-writer ("Mark Train") asserts that "tho dry, sunny, mild and balmy atmosphere of Calitornia, and es pecially of San Jose Valley, is unsurpassed in all the world for the production of raw silk. The mulberry tree springs up in a shorter time, flourishes more luxuriantly, and is blessed with a greater freedom from discase or blemish of any kind, in this State, than in almost any other country. Its trunk attains a circumference of two or three feet in six or seven years, and slips will grow to the hight of ten or twelve feet in a single year. When a climate can be found which insures the mulberry tree against disease, no occupation is so ree from risk and so surely profitable as the silk culture ; and California furnishes that climate. Therefore, there is little question that she will one day become a great silk-growing State. The State legislature has instituted very fair premiums for the encouragement of the silk interest. There were about 200,000 cocoons produced in California this year, half of them by Mr. Prevost, of San Jose. A silk manufacturisag them by Mr. Prevost, of San Jose. A silk manufactursag
company has been formed at San Jose, machinery has been purchased, and the buildings are now in process of erection Silk can be manufactured in San Jose, with Chinese labor, heaper than it can be imported.
" Mr. Prevost raises his cocoons in a garret about 40 by 12 , which has no ventilation, and where the thermometer gets up to 10^{7} sometimes-a state of things which no silk worm would put up with in any other country-yet the beasts eat avenously, live happily, and curl $u p$ in July or August and ie with unalloyed satisfaction. They weave a silken wind-ng-sheet for themselves, and always take a pride in getting it up the best they know how. If these shrouds are to be sent to the factory, the life of the imprisoned worm must be destroyed. If not, that worm turns into a very imbecile looking and inferior quality of butterfly, and bites a hole the end of the cocoon and climbs out And as ling is lives, it never takes any interest in any thing but laying lives, it never takes any interest in any thing but laying eggs. It lays them by the thousand, and they turn to worm and fall to eating mulberry leaves with an avidity that shows that they mean business. A hundred thousand silk worms at dinner at once make a noise with their teeth something like the racket of a steam printing press. A cocoon averages 800 yards of fiber, or 200 to 250 yards of thread-about one spool, Ishould say. Woven into cloth, it will make a strin of sill goods a yurd long, and an inch wide."

MUNN \& COMPANY, Editors and Proprietors.

published weekly at
NO. 37 PARK ROW (PARK BUILDING), NEW YORK.
o. D. munn, S. h. wales, a. e. beach

VOL. XVI., No. 3. . . .[New Series.] . . . Thoenty-first Year.
NEW YORK, SATURDAY, JANUARY 19, 1867.

Contents: are marked with an asterisk;)	
Americanreeenjodaers in arope	${ }_{\substack{\text { and } \\ 34 \\ \text { Sapan }}}$
mal summary.	
Mer Tatent	
$\begin{aligned} & \text { ture } \\ & \text { rsaw } \\ & \hline \end{aligned}$	
Paverfitiston wiel Criank is	
Modern Medicine.	
Patent nredg ho Machinc..........Recent American and Foreign Pat-	
entsAnserBusiness andCoresesponePersonal ents	

Subscriptions to our new Volume are pouring in from every direction far beyond our expectations, and we desire to thank our host of friends for their very generous co-operation in pro moting our circulation, which is now much larger than at any time since the Scientific American began its existence We shall endeavor not to disappoint the expectation of our readers. Five Editors are constantly employed on the Scientific, Mechanical and Literary departments of the paper, and are prepared to discuss all qrestions that belong to the character of the paper, in a plain practical manner.

Owing to the great number of claims of patents-covering about six pages-we are compelled to issue with the present number a four-page supplement. We would have gladly avoided the trouble and expense attending the supplement, but we did not feel willing to deprive our readers of the amount of excellent matter which will be found in this issue. The list of claims embraces the issues of two weeks; something that is not likely to occur again this year.

HANDLES---THEIR VARIETY AND ADAPTABILITY

Does any one who uses some of themultifarious tools which pertain to the manipulation of the mechanic arts-to labor in appendages adapted to them to fit them for effective use The handles differ as widely as the tools themselves. With out noticing the different manner in which the tools are at tached to the handles, the variety in form and structure of the handles themselves, is surprising. Many of these appendages show plainly the object of their peculiarities. For instance, the scythe snath has a very crooked appearance viewed as a piece of timber, but every curve has its object. Where the
handles proper are attached, it approaches a horizontal, handles proper are attached, it approaches a horizontal,
when in use. Below the lower handleit descends at an angle, with a curvature intended to present the blade to the gras near the ground and to swing clear of the body in using. A straighter snath would compel the mower to stoop uncomfor ably and add greatly to his labor.
Some handles are long, as that of the hand rake and hoe others short, as the ax, the hammer, the mallet. But each one has its peculiarities. The handle of the carpenter's hamThose not acquainted practically with the details of the busi ness of the carpenter and joiner and of the machinist, migh not be able to distinguish, at first sight, in what that differ ence consisted. The carpenter's hammer is used for driving nails into a readily yielding substance. The handle is rigid t gives a dead blow. The machinist's hammer is used on comparatively unyielding substances. If rigid it would jar and partially paralyze the muscles of the arm. For "cripping" -cutting iron by means of a cold chisel-the blow is received on the end of a steel chisel and transmitted through it to th
rigid surface of wrought or cast iron. It may be called rigid surface of wrought or cast iron. It may be called a spring blow. Soon as the hammer face strikes the chisel head it rebounds. All good chippers understand the necessity of having the hammer handle elastic. To produce this proper elasticity and graduate it exactly to the work to be per formed, the workman will sometimes spend hours in rasping scraping and sand-papering the wood. The blacksmith'
hammer, on the contrary, has a stiff, unyielding handle, al
though used on the same material as that of th
But in this case the material is soft and malleable. But in this case the material is soft and malleable. Why do the handles of the sledge and the ax so widely dif fer in form? The ax may be nearly as heavy as a light sledge hammer and the handles of about the same length, but in no other respect have they any similarity. The sledge handle is straight and the ax handle curved. But the sledge and ax are not only used on different substances, but in a different manner. The striker grasps his sledge, one hand at the end of the handle and the other advanced, holding each to its place while the blow is delivered. He does not change the relative positions of his hands in striking. Even in delivering a swinging blow both hands remain together at the end of the handle. But see how the wood chopper handles his ax. With one hand at the end and the other in advance he swings his ax, bringing the advanced hand, with a quick, sliding movement, back to the end hand as the ax descends. Only women, unaccustomed to the ax, use it as the striker does the sledge. Now we see the reason of the downward, inward curve of the ax handle. The curve facili tates the downward movement of the hand by making the position of that portion of the handle more perpendicular as the blow is given. It is notorious among blacksmiths that the country lad, accustomed to the use of the ax, requires long practice and repeated instructions before he becomes a good striker. We recollect a laughable incident, that was nearly a serious accident, in illustration. A farmer's boy in a smith's shop was requested to aid in "upsetting" a bar a the end, the bar being laid across the anvil and held by the forger. He gave a blow ax fashion in this unusual, horizontal manner and missing the bar struck the stooping blacksmith full in the forehead, instantly " upsetting" him.

The advantage of a handle adapted to the work to be per formed is exemplified in the difference between that of the formed is exemplified in the difference between that of or
modern shovel and spade, and that of the ancient mattock, o modern shovel and spade, and that of the ancient mattock, or
a spade of fifty years ago. This last was perfectly straight a spade of fifty years ago. This last was perfectly straight
with a cross piece at the end. Being straight, the labor of with a cross piece at the end. Being straight, the labor of
pressing the blade into the soil was greater than it is with a pressing the blade into the soil was greater than it is with a
curved handle, as the hand and foot were compelled to act in the same line. Besides, to retain the load on the spade or shovel, or to carry it, required a very strong grasp to prevent tilt ing. The downward curve of the shovel handle raises the point of suspension of the load, so that the center of gravity falls below the lifting force. The wooden grain shovel with its spoon-like scoop is a case in point. The advantage of this position of the load beneath the point of suspension can be easily tested by attempting to carry a shallow pan full of wa ter by grasping the rim and a pail filled by using the bail. Real science is shown as much in the form and adaptability fary fandes as in any mechanical device; and science is nece shall see that it is not of ten the handles are well adapted to the work for which the tool is designed.

REMEDY FOR SMOKY AND DANGEROUS FLUES.

We are under obligation to Dr. Alex. H. Stevens of Hunt ington, L. I., for valuable suggestions relative to the construc tion of chimneys and fire flues in buildings. Most fires orig inating in flues, may be referred directly to the unphilosophi cal shape in which they have been constructed from the first in deference to the rectangular form of bricks, and with the object of flattening them into thin walls. A given area for draft is obtained, by this form, with an excessive inner surface of masonry to abstract the heat of the ascending draft and thus diminish its force. At the same time, the corners, de taining warm air by their frictional resistance, invite counte
currents of fresh air down the chimney, which not only di minish the draft proper, but increase the danger from the de tention of fire, and materially assist combustion within the burst into flame. Worst of all, the broad flat oxyes and well be avoided far enough by the timber end set in th wall, to prevent frequent fires from their close proximity to the hot draft.

Dr. Stevens has constructed the fire flues of a number o dwellings with reference to these considerations, and as he in forms us, with remarkabie success. His flues were made in the form affording a given draft area with the least inner sur face to abstract heat and oppose frictional resistance to the draft; leaving no corners as channels for counter currents
from each of these causes giving better draft with flues of less size; and by the size and shape of the flues permitting th floor timbers to be inserted in the wall at a safe distance from their inner surface. This form, it is unnecessary to state, is cylindrical. His experience indicates that eight inches would be sufficient diameter for the largest flues, while six-inch and even four-inch flues of this form, for ordinary dwellings, wil give better drafts than those generally in use. An arrange ment of three six-inch flues for one chimney, allowing four inch timbers with the corners bevelled off to be set four inches into the wall between them, at a distance of six inches from each flue, would require an enlargement of the wall to twelve or fourteen inches in thickness, for a breadth of not more than three and a half feet. The expense of constructing a cylindrica flue need be no greater than that of a rectangular one: the mason needs nothing more than an old joint of stove-pipe to work around
A simple contrivance for at once strengthening the draft of a smoky chimney, and so applying abundant fresh air as nei ther to exhaust that in the room nor reduce its temperature was observed by Dr. Stevens in Paris when a medical studen there, as long ago as 1812. It is called a ventose, and is noth ing more than a tube of properly adjusted diameter, let down ing directly under the fire. The descending current of coo
fresh air supports a vigorous combustion, and leaves the at mosphere of the room undisturbed by currents, for the use of mosphere of the
the occupants.

ANOTHER GREAT WORK PROJECTED.

Damming the St. Lawrence, is the topic of the day with the citizens of Montreal. Monstrous as the undertaking seems, engineers have laid it out, and capitalists are about to apply to parliament for a charter incorporating a capital of two millions of dollars for the purpose. It is needless to re nark that the waterpower to be obtained by a successful ac complishment of this work would be many times greater than any other in the world, and could not fail to build up a mighty manufacturing metropolis around the present nucleus called Montreal. At the same time, the city would acquire what it must soon have by some means, a head of water and a pump. ing power adequate to its own supply.
The arrangements of nature to facilitate the giganticwork are quite interesting. The Lachine rapids, just above the city, are said to afford a fall of twenty five feet in about a mile. They are divided longitudinally by a series of island running their entire length, and forming with the northern bank of the river a natural enclosure, lacking only the pro posed dam at its lower end to make an enormous basin and to convert the rapids into a smooth mill-pond or rather lake with a semi-Niagara at its outlet, and a hydraulic power esti timated as two millions of horses. There is also another nat ural channel running ketween the islands, which admits of being made into a mill-stream of seventy-five thousand hors power. To complete the work of nature in this way, require a dam two thousand eight hundred feet in length, leaving the southern and only navigable channel open for commerce and the shoal rocky bed of the river below the dam, besides the shore, for the accommodation of a city of mills and facto ries. A great canal is also to be led inland from the new lake, to supply other factories and conduct an abundance of water to the city

EXPLOSIONS FROM OVERHEATING BOILERS.

We have a communication from an able correspondent rel ive to the causes of steam boiler explosions, in which he reckons the following as a prolific cause: "The sudden form ation of steam caused by a change in the position of the boiler the sudden starting or stopping of a locomotive, the rolling of a steamer, or any sudden shock given the boiler. This formation of steam is caused by the water in the boiler bein thrown suddenly on the sides of the boiler not before covered by water. An immense volume of super-heated steam is thu formed, as it were in an instant, exerting a greater pressur than that which the boiler is calculated to withstand."
We do not entirely agree with our correspondent in hi views. If they were correct, explosions of the boilers of sea-going steamers should be much more frequent than they are. An article in the London Mechanics' Magazine puts th subject in a more reasonable light, we think. This article says :-
A great number of boiler explosions are attributed to over eating: in fact some theorists go so far as to assume this a the general cause of such catastrophes. Now this theory, taken
in a broad sense, is a false one, although it is possible that a boiler may be exploded by the formation of a preat quantity of steam from water thrown upon red-hot plates. But a con sideration of some of the phenomena of heat places this possi bility at the farthest limit, and the occurrence of an explosion from such a cause only jus.t within its bounds. We quench the heat of a railway tire in a cistern, and why may we no ing to see how small a quantity of steam is disen It is surpris a large body of wrought iron is plunged into twice or thric its weight of cold water. Now if we reverse the operation and dispose the same weight of metal in the form of a boiler heat it to the same degree, and throw the same quantity of cold water into it, is it not reasonable to expect that exactly the same amount of steam will be produced ? If so, wher flicted upon the iron by burning?
If we look into the matter a ittle more closely we shal find that the metallic plates of a steam boiler are not capabl of containing suficient heat to change a very large quantit of water into steam. The total quantity of heat which would raise the temperature of 1 cwt. of iron through one deg. ditional temperature to $121-2$ lbs. only of water. And thi makes it clear that overheating is not the sole cause of an plosion, although it may lead to a rupture by weakening the plates.

The writer fortifies his position by the following account of an experiment:-
An empty boiler 25 feet long and 6 feet diameter, and with he safety valve loaded to 60 lbs. per square inch, was mad red hot. Whilein this condition the feed was suddenly let on and the boiler filled up. The experimenters expected a mighty explosion, for which they were fully prepared, but n traction of the overheated iron, which allowed the free escape of the water at every seam and rivet as high as the fire mar xtended. Althount1 we were not witnesses of the occurrenc yet arguing upon the hypothesis regarding the action of hea he more so in to, we cannot hesitate to accept the fact imilar character having been made, and which were attended with similar resalts.
Charles Wye Williams maintained that steam in a boile under pressure is as much in the water itself as in the steam pace. He contended that in the case of an explosion th globules of steam contained in the water and confined by pessure in a medium over eight hundred times denser tha the steam alone, fly into the steam space when the pressure is removed, and expandin volume in proportion to the density of the two mediums, or over eight hundred times. The M Chanics' Magazine, however, adopts the theory of Mr. Zera Colburn, and says:-
In all boiler explosions, the pressure of steam is instanta

