

MUNN \& COMPANY, Editors and Proprietors.

PDBLISHED WEEKLYAT
OW (PARK BUILDING), NEW YORK
NO. 37 Part Row (Park building), Ne
o. d. monn. s. h. Wales, A. e. beach

VOL. XVI., No. 23....[New Series.] . . . Twoenty-first Year.
NEW YORK, SATURDAY, JUNE 8, 1867.

another new and remarkable textile.

It will be pleasant indeed to find the enthusiastic anticipa tions of M. Benito Roezl, of the eminent French naturalists Blume, Decaisne, and others, and of Mr. A. B. Bacon, chair man of the Section of Agriculture, New Orleans Academy of Science, realized in respect to the Ramie or Boehmeria tenacissima, of Java. From the nature of the case, anticipations so high must seem extravagant, and be held subject to extra haz ards of disappointment, until their actual accompltshment leaves no place for conjecture. From a communication by the last-named gentleman to the Academy of which he is a mem ber, we learn that at present the exotic is introduced and flourishing in a large plantation in Mexico, and that the conviction of the naturalists who have nursed it and experiment ed upon it for the last twenty-three years, that its fibre is stronger than hemp, as fine and white and twice as durable as linen, and more productive than cotton, is so far confirmed that in 1865 M. Roezl esported and sold in England over 5000 lbs. of the staple at double the price of the best quality of cotton. Its beautiful fabrics will be displayed in the Paris Ex position, but we have as yet received no account of them.
The Ramié belongs, like the hemp and the nettle, to the urticaceer, and was transplanted from the island of Java to the Paris Jardin des Plantes, by Blume, in 1844, where it was reared in the hot-house until its introduction into the more congenial climate of Mexico by M. Roezl, former head of the Horticultural Institute of Belgium, within cleven years past. It is considered that only the middle and southern portions of our Gulf States will afford it a suitable climate, and that in that latitude it will make three or four crops a year, each equal in quantity to the most prolific of hemp.
The perseverance of Mr. Roezl in domesticating the staple in the western world has been almost romantic-perhaps we
should say heroic-and richly deserves the high reward his should say heroic-and richly deserves the high reward his friends anticipate for it. Having first gone to Java and spen of the plant, lee emigrated to Mexico with a store of its roots On his way to the capital he was robbed of his treasure by the Mexican banditti, who took little benefit from their crime the Mexican banditti, who took ilttle benefit from their crime, supply, which was at length procured through the good offisupply, which was at length procured tirough the good
ces of the British navy : but this perished on the voyage to England. Again it was attempted, and again the plants were killed. A third attempt succeeded, but the plants had to be placed under hot-house cultivation in England, to give them strength for another great voyage. At last, in 1859, after six years of waiting and endeavor of this kind, his piants arrived
half dead, and with the skill of an accomplished and scien half dead, and with the skill of an accomplished and scien
tific lorticulturist he nursed them successfully into life, and within two years found himself the owner of a thriving plantation.
This was but raw material, and the least part of the diffi culties had been overcome. 'He imported from England the most approved machinery for cleaning flax and hemp, but it proved unsuited to the requirements of so fine a fibre. Two years of effort in this direction were spent in vain, when he
fell back upon his own tireless resources, and in two years fell back upon his own tireless resources, and in two years
more produced two inplements of his own invention by which the stalks were converted within twenty-four hours after cutting, into long skeins of pure, white and silk-like fiber, ready for spinning. In February last, Mr Roezl visited Cuba with specimens of the results of his eleven years labor, which after careful examination were pronounced of the first importance by the naturalists and agriculturists of the island, who predict that it will supplant tobacco and coffee as a pref erable staple for Cuba. Mr. Roezl takes five crops per annum from his plantation, the matured plant, which is pereznial, at taining when well rooted the hight of twenty feet.

condition of the patent office

Nearly two months ago, in announcing the passage by Con gress of a bill to increase the examining force of the Paten Office, we commented as follows:-" The Commissioner is now
clothed with ample authority. We understand that he in tends to fill all new positions by promotions, which is certain ly very commendable. We earnestly hope that the Commis sioner will,. act promptly and energetically in carrying the new measure into effect. The business of the office is suffer ing very much from the delay which attends the examinatio of cases, and now that the Commissioner has the power, we the Department."
We have yet to learn that the Commissioner has made single new appointment or taken any active measures to wards bringing up the back work of the Office. Hundreds of applications are awaiting action, some made six months
and more ago. Inventors are getting discouraged, and everyand more ago. Inventors are getting discouraged, and every-
body who has business transactions with the Office is disappointed that the Commissioner does not avail himself of th authority vested in him by Congress to increase his force. In some classes the examinations are closely up, but in other they are several months behind. This condition of thing should not exist, and with the power ceded to the Commis sioner by our last Congress, there is no occasion for it. Wake uf! Mr. Comnissioner: inventors are busy, applications for patents never were greater, the treasury of the Office is ple thoric, and now all that is wanted to make the Patent Office the most prosperous department under Government is a vig orous administration

modes of working wood

So much of the public attention has of late years been directed to the new preparations and applications of the metals particularly iron and steel, that the merits of that old tim friend of man civilized as well as aavage, wood, are likely to be overlooked. Volume after volume is issued from the press, and our periodicals are filled with articles devoted to the properties, qualities, uses, and manipulations of the metals, while those which treat on wood are few and far be
tween. Still, it would be difficult to imagine, in our presen state of advancement, where to look for a substitute which should combine so many qualifications of usefulness and such adaptability to diverse manipulation.
Besides the hundred applications of cutting, splitting, and sawing, wood can be worked in many more ways. It is doubtful if any substance with which we are acquainted is
suceptible of so many radical changes-changes which alter suceptible of so many radical changes-changes which alter
the very structure of the material and adapt it to the most opposite uses. It can be torn into fibrous shreds which make elastic cushions or beds; made into a spongy, porous mass hardened by chem:cals which change its texture and make it semi-mineral in nature; compressed by mechanical means, closing its pores, until it is nearly as compact as the metals. It may be molded into variousforms; bent to keep itsenforced position ; dissolved into pulp and made into paper; separated into lamince by percussion, and, in short, treated in any con ceivable manner except melted and cast.
Perhaps one of the most interesting of the methods o working wood is that of separating one layer from another by percussion, or by compression joined to bending. Those woods only can be treated in this way which grow by exter nal concentric accretions, as many of our hard wood trees The wood for this treatment should be tough, elastic, and
straight-grained. straight.grained.
The Indians of this country, and the basket makers in others, separate the layers of the wood by beating upon the
surface of a log with heavy mallets, when the wood comes off in thin lamince. This method of disintegrating wood is one of the oldest of human arts; probably no mode of working wood is older. What was formerly done by hand is now, how ever, performed by machinery. We saw the other day, in Jersey City, machinery which performed this work in a re markably rapid and effective manner. It was run by the Wilder Hoop Machine Company, and was designed for making (rolling) hoops of wood from a " bolt" split from a log. Th wood used was black ash, although any tough, straight grained wood would answer. The bolt was a longitudinal
cleft the cross section of which might approach either a parallelogram or a triaigle. One end was presented to a space between two swiftly-revolving heads armed with cutters
which almost instantly formed a wedge-shaped point, then to which almost instantly formed a wedge-shaped point, then to
another dikk with thin cutters which splits the V-shaped end at intervals corresponding with the thickness of the hoops to be made. These splits do not extend more than one or two inches from the end. The bolt is then run between circular saws and trimmed to nearly a square form, or to a parallelo gram,
hoops.
Then the bolt is passed between upright corrugated feed rollers held in contact by powerful springs. Directly behind these were a set of smooth rollers, placed horizontally, be tween which the bolt passed, being compressed powerfully and by means of a curved guide compelled to take a shor curve. The result was a splitting from end to end of the bolt forming perfect hoops, or rather slips of equal thickness throughout. The philosophy was not difficult to understand The slits cut in the end of the bolt were starters for the thickness of the splits. The wood, being wet, yielded to the com-
pression of the rollers, and the direction given the bolt by the curved shoe compelled one piece to slide upon anothe sufficiently to divide the cross fibers and insure a separation The whole process is a very brief one, occupying no more time probably than would be spent in reading this description. It is very interesting and gives the observant man new ideas
concerning the capabilities of wood. That its fibers can be cleanly separated, simply by compression and bending, to make as smooth a job as if sawed, and preserve the longitudinal grain and consequent strength as perfectly as if split by ordinary means, is at least surprising

the golf stream and the cuba telegraph.

A special survey has been made under the direction of the Acting Superintendent of the U. S. Coast Survey, Mr. J. E. Hilgard, at the instance of the International Ocean Telegraph Company, with a view to determine the conditions to be en countered in locating the cable between Florida and Cuba hrough the Gulf Stream. The examination reveals a ver rregular and precipitous descent from the Cuban coast, reach ing the maximum depth of the channel, 843 fathoms (say 5,000 feet) 37 miles from the Moro. From the northward, the bottom falls away in terraces without abrupt slopes. It is in he deep canons or gorges of the southern portion that the Gulf Stream and its counter currents find their channels while the sea lies almost motionless above the terraces of the northern coast. About 21 miles from the coast of Cuba, submarine mountain rises in the midst of the southern chan hel, with the extreme depths of 748 and 843 fathoms on either side of it. The summit of this mountain is 2,400 feet above the bed of the straits and reaches to within 2,400 feet of the surface ; the current running over it so strongly that sound ings were made with great difficulty. It appears to be triangular in its general form, with precipitous sides, present ing at its west angle a bold prow to the stream
Assistant Henry Mitchell, from whom these data are derived, states that the observations indicate the depth of the Gulf Stream to be scarcely more than one-third the maximum depth of the channel. He concludes that the Gulf Stream is ot a profound movement, but an overflow of water from th Gulf, having for its office the restoration of surface level while the office of the counter stream, or "polar current," beneath, is the restoration of equilibrium thus disturbed be tween waters of different specific weights or densities. This view of compensating currents is illustrated by observations in the Hudson river. In the dry season (July) the surface outfow of the river through the Narrows has been found to occupy three-fourths instead of half the twelve tidal hours while in the under stratum the case is more than reversed and the inflow predominates to such an extent that as eneral thing it is constant along the bottom, although not in elocity ; and the same conditions with variable proportions btain for some distance up the river. On running a line of levels from New York to Albany, it was found that the bed of the Hudson river lies below the mean level of the sea for ver a hundred miles, while the surface of the fresh water r river proper, in the dry season, is above this level, yet not so much above as to counterbalance the excess of specific gravity in the sea water, which consequently during the summer months flows in along the bed of the stream, while the fresh water overflows into the ocean. In other words, the Hudson, for one hundred miles, is in the summer but a rm of the sea analogous to theGulf of Mexico, deriving much of its elevation as a stream, frem a like cause with that of he Gulf stream, viz : its lightness, lifted above the sea level by the bottom pressure and infiow of the heavy sea water in the opposite direction
The striking variations in the velocities of the Gulf Stream, which were particularly remarked by navigators during the ate survey, the weather being exceedingly calm, are ac counted for on the hypothesis that they follow the change in mean sea level which depend upon the declinations of the un and moon-more especially the latter. Prof. Bache ha shown that the mean level at Key West. is one foot higher when the moon is in the equator than when she is at her greatest declination; while, on the contrary, in the North Atlantic the mean level is about three inches higher at her maximum declination: giving a variation of fifteen inches in evel to account for the variations in the velocity of the level to
stream.

the peice and prospect of bread.

We have remarked the extraordinary phenomenon of bread stuffs going from east to west instead of west to east, and eve from Europe to America in a few exceptional instances. The fact is that there is more flour and wheat at the east than a he west, and although the stocks on hand in New York ar much larger than last year at this time, while large shipment are made from California, those in the west are much more than proportionally smaller, and prices equally high; so that he aggregate of breadstuffs in the country is evidently re duced enough to fully account for the present enormous prices Among the causes of scarcity are the short western crops of ast year (resulting partly from a scarcity of labor which the war has left as a melancholy memorial of its carnage) the hal extinct agriculture of the South, and its heavy drain upon the northern markets. The anticipated crops, rich as thei promise is, cannot therefore exert their natural effect upon prices, and will not begin to replenish the marketat all unde wo months. But before that time, if no new calamity or por tent intervenes, the coming harvests will cast their shadows before, and discourage the extortion of speculators materially When they are fairly in the field, it may be rationally hoped, he prices of food will come down to a more reasonable scale than has been known for years. The most cheering accounts of the wheat prospect pour in from every section of the country. The South has devoted an unprecedented proportion of land to food, and the crops promise unusually well, while the West, the mighty tide of immigrating labor has filled up the ghastly chasm left by the war, the high prices have
produced a great increase in the breadth of land sown,-in some regions nearly double-and Providence has smiled upon the buriel seed and the tender blade. The deep snows of the winter have protected the wheat, and from everysection comes the report that it is growing magnificently and promises a glorious yield, far surpassing in the aggregate any crop eve before raised in thiscountry. The Puritans of New England, taught by hunger to feel their dependence on the God of nature, used to fast and pray one day in every spring, fora blessing on their hard fields, and their descendants keep up at least the form in the New England states to this day. Our crops liave yet to run the gauntlet of many foes, and may the Providence whose bounty we have seen so marvellously enlarged in modern years, still regard mercifully the wants of our toiling millions, and "God save the wheat!"
'The report of the Agricultural Department for April says : " Never has there been so general an expression of encouragement in view of the fine condition of winter wheat since the establishment of the present system for the collection of crop statistics. In more than nine tenths of the returns received, the condition of the crop is reported favorable and promising. From the South the returns are as cheering as from the West. The report states, however, that the loss of cattle from starvation and exposure the past winter has been extraordinasy. Beef is not likely to be any cheaper.

gleanings from the polytecknic association.

Dr. Feuchtwanger showed a specimen of tellurium an ceedingly rare substance commonly classed among the met Is lout which has much analogy in its properties to sulphur and selenium. The French call this substance one of the metalloids. In its native state the ore is found combined with iron, gold, or silver. Its color is silvery white and orilliaut, and in appearance it closely resembles antimony. It is found in the Altai mountains and in Transylvania. Th specimen shown was found in a gold mine of California.
Mr. Fisher exhibited drawings for a steam-plowing machin or more properly a pulverizer. The machine resembles a loco motive with a short boiler, and mounted on wide tired wheels. The power is applied to drive a drum having circuar saws therecon set three inches apart. By suitable gearing le engine advances slowly while the drums rotate with grea rapidity, pulverizing the soil to the proper depth. The subject of steam plowing being thus introduced, its importance was acknowledged by all, but an animated discussion sprung up respecting the relative advantages of employing traction engines working the plows directly, or stationary engines working the plows by means of chains, as is the common ustom in England. Both methods had their advocates who warmly argued their respective merits. It was claimed on one side that the traction engine beats down the field in ront of the spaders which it afterward is made to plow up as the wheels must be made wide enough to prevent the mahine from sinking into the ground.
Mr. Parmelee read a paper on gypsum, describing its na ure, and referring more especially to its use as a fertilize ts value in this respect he asserted was owing to its absorp tive power in taking in ammonia from the atmosphere and
storing it up to be disseminated by the rains through the storing
fields.

President Tillman gave the club the results of some experments he had wincsse at the works of the lead encase block tin pipe company, showing that this pipe possessed the ame strength as that of lead pipe of twiceits weight. Healso eferred to the dangerous effects from using water drawn brough common lead pipe, and advocated the passage of a law which would prevent its emp.oyment in this capacity. He was followed by several members speaking on the same subject, describing minutely the action of the poison and ts different effects. Some persons are more susceptible to its injurious consequences than others, as is well known to be the case in regard to painter's colic and kindred complaints. Mr. Walling repeated the beautiful experiment lately per formed by Prof. Thompson of Edinburg before the Royal So ciety of Scotland, and described in the article on "wirbel be wegung" on page 212, current volume. These air vortexe are very frequently produced in nature and are made visible when smoke or steam is mixed with the whirling air. They may be seen when cannon are fired, particularly if the muz zle is "slushed" with grease, also as issuing from the smoke tack of a locomotive just starting : human swokers consti tute perhaps the largest number of experimenters in this line r. Walling remarked that the molecular theory based npon this phenomenon by Prof. Thompson, was an indication of the tendency of scientific opinion towards some such purely dynamical theory as had been previoasly proposed by him self.

lin Lined Pipe for Water

On Thursday the 23d of May an exhibition of the metho of the new manufacture of lead pipe lined with block tin was given at the manufactory of the inventors and manufac turers,foot of west 27 th street, New York. The visitors in vit ed had an opportunity to witness the processes from the first casting of the core of tin to the production of the pipe in its finished state, and the sentiment was general that it was a complete success. We have no time nor space in this issue to describe the processes, norto state the facts established by . iments. In our nest we shal erd the immense advantages of this over the ordinary water pipe.

Tee hardware manufactory of Sargent \& Co., New Haven, Conn., gives employment, at its full capacity, to 800 hands, and turns out 4,000 different articles of hardware to the amount of $\$ 4,000,000$ to $\$ 7,000,000$ per year.

ISSUED FROM THE D.S. PATENT OFFICE FOR THE WEEK ENDING MAY 21, 1867 .
Reportect Oofccally for the Sclentizic Amercan
Patents are granted for seventeen years, the sollowing

It Canada and Nova Scotia pay $\$ 500$ on application.

64,826.-Device for Holding Cigars.-Charles Appel, Ho I claim, at an inpproved article of manu facture, a cigar holder consisting of
combination of he shell, A B, with the cutter, d. the tater either being attached to one of the shells, or beewing part of the same, all made and opera
ng substantlally as andfor the purpose herein shown and described. 64,827.-Lime KILN.-George Atkins, Sharon, Pa.
 64,828.--HAY PRess.--George H. Aylworth, Brighton, Ill.
 64,829.-Carriage-window Frames.-Francis Baker, New
 ranged to move iil and through the carriane bor ply anded bo uprights prings, F , ar
horis. or catches, N , and studs, I , substantially as and for the purpose de
scribed. 64,830-SEWING MACHINE.-Robert Barclay, Buffalo, N. Y

64,831--Liquid for Carbureting Gases -John A. Bas ,031--LIQUID For
sett, Salem, Mass.

64,832. - Peat Machine, - Alfred Bridges, Newton, Mass.
 the manner rand for the purpose dese.
second, The adusting plonqert, E ,
or its equivalent, as above specilied.
64,833.-Railway Switch.-James S. Brothers, Duncannon I clam the constructlon of the chair, K, with the adjustable frog, G. When
arranged, combined, and operated as herein described and for the purpose 64,834.-Quartz Mill.-Samuel C. Bruce, New York City. First. I Claim the revolving- wheels. © and D D, weth vew olities varying in
ome regular ratio, so that whieel, D shall always revolve faster than, ind in

 64,835.-Saw Set.-Benjamin N. Butcher, Philađelphia, Pa

64,836.-Cane and Sorghum Stripper.-James A. Camp bell, Stow, Ohio.

 64,837.-Portable Shat for Dhivers upon Cars.-James
F. Campbell and Cornelius Finney, Williamsburg, N. Y We claim the upright or staff. B, with hook ato one end, and orovided with
aroct, hiaving seat, G , and strap, H , substantially as and for the purpos
described. 64,838.-Bottle Stopper.-Horace S. Carley, Cambridge port, Mass.
I chan the Slide. Fr, carrying stopper, in combination with the suivele
loop, E, in which it mover, substantialy Lalso claim, in combination with the abov
ally as described for the purpose set forth.
64,839.-Wheel Plow.-Elisha A. Chace, Rosemond, Ill.
 64,840.-Cloth-guide for Sewing Machines.-George F First, I claim in a cloth yuide for sew.

64,841.-Deodorizer for Privy Seats.-Ncil Clifford and
We claim the combination with the

 movement of theseat, or both, the said cisinnfectant or deodorizer $\begin{aligned} & \text { will be dis. } \\ & \text { chared into the vault of the privy, etc., substantially as and tor the purpose } \\ & \text { described. }\end{aligned}$
64,842.-Locomotive Engine.-Joseph M. Coale, Baltimore Md.

$4,843 .-R a t l r o a d$ Rail. Fastening.-John C
Township, N. J. Antedated May 13, 1867.
First. I claim the combination of a screw bolt or wood screw spike, with
cleat that has a bearing upon the ton and the edge of that thange, an

64,844.-STEAM Generator.-S. M. Colburn (assignor to himself and Sylvester Colburn), Ansonia, Conn. Iclain, the plate, S, constructed and arranged within the boiler, so as to
forma a hamber, Co, communcicating with the bioler by means of openings or
perforations, a, subs santially as and for the purpose set forth. 64,845.--Manufacture of Gas. - Joseph H. Connelly, Wheeling, West Va.

 Fourth. The use of residuum oil alone, in combination with lime, for the
peoduction of inflammable gas, desulphurized and whitened in the manner
bet torth.
64,846 .-MEANS FOR STEERING VESSELS.-Robert Creuz. 64,846.-MEANS FOR STEER
bauer, New York City,
Firs, 1 clam, in combination with

 64,847.-KEEPER FOR Door Locks.-George W. DaCunha,
of New York city. of New York city.
I claim an improved catchior
 part of the side catch
the purpose set forth.
64,848. - Hay Loaderss--Leopold De Lacee, Springfield, Ill.

 64,849.-Planing Machines.-William H. Doane, Gerritt V Orton, and William E. Loudon, of Cincinnati, Ohio, as signor to J. A. Fay \& Co,

 64,850.-Wheel Vehicles.-James W. Drew, Stockbridge Mich., assignor to J.N. Townson and James W. Drew
 64,851.-Cocks.-Charles M. Alburger, (assignor to George
 he, F, packing, E, and spigot, C, subetantialiy as aescrived or the purpob
specified.
64,852 -Converting Rectilinear into Rotary Motion.First, I claim A. Ehlenverting rectilinear motion into rotary

First, I claim converting rectilinear motion into rotary motion by the use of polygons. substantially as decribed.

 64,853.-Portable Roofing Boileri and Furnace.-Perry Fenlason, Cincinnati, Ohio.

64,854.-Atrachment to Stoves for Generating Gas.-
B. L. Fetherolf, (assignor to himself and J. N. Hea desty)
T. Tamaqua, Penn.
I claim the hollow metalit
 64,855.-Putring up Oils in Casks, \&ec.-P. G. Finn, Erie, Penn.
xplanded state, substantially as and for the purpose set forth. 64,850.-Edible Composition.-Daniel Fobes, (assignor to Fobes, Hayward, \& Co.), Boston, Mass.
I claim the edible composition as made of the material
or the purpose substantially as described. 64,857.-Extension Table.-George F. Folsom, (assignor
to himself and Charles F. Pease), Roxbury, Mass to himself and Charles F. Pease), Roxbury, Mass. I claim the combination as well as the arrangement of an auxiliary lear, E ,
nd mechanism (viz. ifs rods, w, clevators, H, and their counter cams, or the

 64,858.-Mechanical Movement.-William Galladay, Shebu, 8 - MECHANICAL
boygan Falls, Wis.
a claim tie combination of th
Clcaim the combination of thearms, $C D, ~ a n d ~ p a w l s, ~ E ~ F, ~ w i t h ~ t h e ~ r a t c h e ~$
 64,859.---Gig Mills..--Ernst Gessner, Aue, Saxony. First, I claim the construction and arrangement of the revoving difks, D,
nthe the
ied.
 64,860.-Gates.-Robert D. Green, Columbia, Mo.

 64,861.-Manure Drag.--Christian H. and Joseph H. Harn

