FAY'S ROOFING, FLOORING AND WEATHER-BOARDING PAPER.
Those oldest manufacturers of paper, the Chinese, have adapted this substance to many uses for which we employ other and more costly materials. Clothing, the soles of boots, household utensils, coverings for houses, etc., are among the varied uses to which paper is adapted by this ingenious people. We have not yet equaled them in diversity of employments for paper, but the engraving herewith given shows a use for paper specially prepared for the purpose. It is a paper made of manilla, hemp, or grass according to a proces which makes it perfectly air and moisture proof.

The improvement is the subject of a patent issued through the Scientific American Patent Agency to C. J. Fay, in January: 1867, and includes the method of attaching the paper to the roofs, sides, flooring and ceiling of buildings, and to the decks of vessels, to awnings and carriages. The paper is manufactured in strips of proper width for the purpose required, and creased at regular intervals for folding and
marked for the insertion of the nails or tacks which secure i to the surface on which it rests. 'The plan protects the nail from oxidation by covering them with the impervious paper This method may be seen at A, where the tack is driven through the paper into the board and the paper is then folded over it. It is used on the siding or roof of a house in the same manner, as seen at B and C.
It is claimed that for weather boarding, half-inch lumber is as good where this paper is used as inch stuff, where it is not used. The boards, even for the roof, need not be tongued and grooved, only matched by the saw. For floors, it is tacked down, and then painted if the floor is not to be carpeted. No moths will attack a carpet laid on this paper. For walls and ceilings it is intended to supersede laths and plaster, and it can be painted as desired, will wash clean without injury, and is said to be far superior for warmth to any plaster.
It is cheap, efficient, and easily applied, greatly reducing the cost of building. For more detailed information our readers are referred to C. J. Fay \& Co., S. E. corner of Front and Vine streets, Philadelphia, Pa.

Tests of the Potter Rail
In No. 4, current volume we illustrated a rail made of Bessemer steel and iron at the Wyandotte Rolling Mills, at Wyandotte Mich. The heads are of steel and the web and bottom of iron. A few weeks ago a test of the security of the weld was made, an acocunt of which we copy from the Journal of the Frankiln Institute :-
"A weight of sixteen hundred pounds was allowed to fall four feet upon a piece of Doddized rail five feet long; it broke at the first blow. A piece of the steel-headed rail made at Wyandotte was then put under the drop, and subjected to four blows as follows : For the first blow the weight was raised five feet ; for the second, ten feet. The rail was then turned over, and received the third blow with a fall of fifteen feet; and the fourth blow with a fall of twenty feet, bent the rail almost double. The rail was then taken to the steam hammer whose weight was eight thousa
"When the or it brok but the iron and steel remained perfectly welded together. One of these pieces was then subjected to one hundred blows from
on the rail, as follows : Fifty blows at two feet fall, and fifty at three feet fall. This crushed the rail without breaking the weld of the iron and steel."

CUSTER'S IMPROVED TOE CALK FOR HORSES' 8HOES,

This calk is formed with a ribbed projection produced by isplacement of its metal. The bar, when hot, is placed pon a die and with a blow the recess and central projection formed. The ordinary calk is made by one end being rawn to a point and turned up at a right angle. This er ails more labor and by being forced into the shoe weakens it, while the welding of the projection on this improved calk to he shoe adds to its strength. It is claimed that this calk has

advantages over both the ordinary and the two pronged calk, in greater durability of the shoe and greater economy of abor and material.
These calks can be made upon the anvil or from the bar onder a drop, which for this purpose may be made very cheaply. The union between shoe and calk is very perfect artaking of the nature of a dovetail, as the toe of the sho is driven into the recess of the calk while the projection of the calk is welded into the shoe.
This device was patented Feb. 12, 1867, and rights of rritory or manufacture may be obtained of Custer \& Tull Monroe, Mich.
anfesthesia has been tried by two French surgeons, on he track of the tri-facial nerve, in the external ear, to produc local insensibility under the extraction of teeth. Twenty four out of thirty-two operations were painless and three doubtful A tonsil was removed without the slightest pain.

gavertisemments.

A limited number of advertisements woill be ad mitted in this page on the folloooing terms:-Seventy-five cents a line, each insertion, for solid matter ; one dollar a line for space occupied by engravings.

SCOTCH GLASS TUBES, ASHCROFT
 $\mathbf{Z}^{\text {IMMERMAN'S PATENT }}$

L AW'S PATENT SHINGLE and HEAD

IMPORTANT TO BLOCK MAKERS.TMin subgeriber would ilke to sell his patent for a

AGENTS WANTED.

$\$ 200$ Per Month and Expenses Paid

E UROPEAN AGENCY for the Exhibition BLANCHARD \& McKEAN.
 $\mathbf{M}^{\text {ACHINERY. }} \underset{\text { We are prepared to urnish }}{ }$
 BAMPLEE of the TooLs manafactured by ny may be

EMERSON'S PATENT MOVABLE TEETH.
These Saws cut More and Better Lumber in the same time, and with Less Power, than any
with Less Expenditure of Labor and Files to keep in order, and neverWear Smaller. Also,
EMERSON'S PATENT GAUGING AN'D SHARPENING SWAGE
2 Jacob streat, near Ferry street, New York
TURBINE WATER WHEELS.

having had long experience. Circulars sent free. GEORGE TALLCOT, $17 \mathrm{tI}-\mathrm{H}]$ No. 98 LIBERTY STREET, NEW YORE. WiLD Moss Mirls, Carrollton, Mo., March 14, 1866.
LONZO WARREN, Esq., Boston, Mass.

AMERICAN SAW COMPAN
HOW TO OBTAIN PATENTS.

 $|$| Dra |
| :--- |
| offl |
| effor |

3ur Beacthtulg fiur Deutiche

 Criniber.Mady bem neuen Matent=(Gefetbe ber Bercinigten Gtaaten, tonnen Deut jde, fobie Bürger aller 2 \&an felben Bebingungen erlangen, wie 'Bürger ber Ber ©taaten.
Erfunbigungen über bie, zur ©rlangung bors Patenten nütbigen Garyitte, fömen in beutface Eprade (duriftlid) ant unt geriaftet lverben unt (Ex winber, weldeperionlidi nadu unlerer Sifice fomm
 nefft ben ఇegeqn unb ber Gefdäft8orbuung ber Watentofice, und $\mathfrak{H n L e}$ intent fitr bie Erfinder um
 uns in beutjder ©pradie berauggegeben, und werben gratis an alle berjandt, welde barum münblidy oder \{duriftlidy einfommen

MUNN \& CO.
37 Park Row, New York.

Scientific American ENLARGED FOR 1867.

This is the oldest, the largest andmost widely circulated Journal of its class now published. It is the constant ammrial arts and sclect ve manner.
It would be impossible within the limits of a Pros. pectus, to enumerate the great variety of sabjects discussed and illustrated. A few only can be indicated, вuch Cs' Tools, Manufacturing Machines, Farm Implements Iydraulic Engines, Wood-working Machines, Chemical apparatus, Household Utensi s, Curious Inventio the ber. of man in the Shop, Factory, Warehouse, and Hoasehold The Soikntifio Amerionn has always been the AdVocate of the Rights or American Inventors. Esch farnished expresslv for it by the Patent Offlce, to gether with notes descriptive of American and Earopean Patent. red Inventions.
Patent Law Decisions, and questions arising ander these laws, on Patent Law.
Published Wee
Janvary and July,
Per annum...........
SIr months
Ten conves for Öe Ÿe
. .8800
. .850
105
00
Canziua sabscriptions, zs cents extra. Specimen copies
seat free Address
No. s? Park Row, New York Cits

