SCOMMMEMO ADGBECAM.

MUNN \& COMPANY, Editors and Proprietors.
NO. 37 PARE ROW (PARK BUILDING), NEW YORR

VOL. XVI., No. 18.... [New Series.]Twenty-first Tear. NEW YORE, SATURDAY, MAY 4, 1867.

cadtion.
It has become necessary for us to state very distinctly tha the Scientific American Patent Agency Offlces are at No 37 Park Row, and not at No 39.

are OUR coal pields inexhavitible?

Some sneers were indulged in when, a few months ago, English savans debated the question of the exhaustibility of the coal fields of Great Britain, but it might be well even for us, whose area of already discovered coal is seventeen times as great as that of England, to consider the question as ap plied to us.
A feqw days ago a gentleman residing in this city informed us that the heating and cooking apparatus of his dwelling had consumed since November last-less than five months-thirty-three tuns of coal. This is no exceptional case; it can be duplicated and even exceeded in hundreds of instances.
But the consumption of coal for domestic purposes is as the But the consumption of coal for domestic purposes is as the drop in the bucket compared with the consumption in manu factories, on railroads, and in steamships. have no atmosphere of carbonic acid, no forest of gigantic ferns and mosses, no sluggish sea, nor perpetual hot-house summer which might form a coal bed of three feet in thick ness in as many weeks, while it would now, under our present circumstances, require 7,400 years to producea deposit of equal thickness.
'Jhe coal beds of Great Britain cover an area, according to T'aylor, of 11,859 square miles. Prof. Hitchcock estimates the area at 12,000 ; other authorities average 7,995, and Prof. Rogers calls it only 5,400 . Probably, when the deductions for "faults," "trap dykes," and "worn out" territory are made, about 5,600 square miles will give the present available resources of the English coal fields. Every vertical foot will
Field 1,500 tuns of coal to the acre, and 50 feet total thick yield 1,500 tuns of coal to the acre
ness will give 75,000 tuns per acre.
Our known coal area is estimated at 206,939 square miles, of which only about 470 square miles is anthracite, yet of 22,000 ,000 tuns mined in 1864, $10,000,000$ were anthracite. When it is considered that the amount mined represented only the current demand, or rather that which was produced for the market, and did not comprise that wasted, lost in pillars, etc., it may excite some inquiry in regard to the ultimate exhaustion of our anthracite beds. The population of the entire East, a portion of the South, and the Northwest, over 12,000 ,
000 , draw their supplies from the Pennsylvania anthracite 000 , draw their supplies from the Pennsylvania anthracite
fields, and large quantities are exported to Canada and shipfields, and large quantities are exported to Canada and shipped to other countries. The natural increase of the anthracite coal trade is over two and a half per cent per annum, so
in 1870 the demand will be not less than $15,000,000$ tuns, probably much more. Estimating an average of sixty vertical feet in thickness our anthracite fields contain $18,000,000,000$ tuns, which, at the present rate of increase in demand, would entirely exhaust them in 600 years. But about one half of this is lost and wasted by our present system of mining, and should the anthracite trade ever approach the dimensions of the English coal trade, our supply would melt away in about 180 years.
Some impure anthracite is found in Massachusetts and Rhode Island, and Oregon contains a limited field of the same, but owing to superiority in quality and advantages of location, Pennsylvania will probably continue to be the source from which the nation's supplies will be mainly drawn. While the anthracite of Pennsylvania underlies only 470 square miles of her surface, her bituminous deposits have an area of 12,656 squaremiles, and all the great Western and the Southused for manufacturing purposes (iron) so long as the nearly
pure carbon can be obtained, and will be employed for house hold and other purposes only when its comparative cheapness fsets its advantages. What the hitherto unexplored region of a mineral fuel, can at present only be conjectured.

phonograpay and photo-phonography.

The query is not now to be raised for the first time, whether human speech may not be made to record itself. Yet it is in reality a novel question, for we have as yet but vague hints of the possibility, and scarce a hint of the process. Among echo. Since a screen mas perfectedser a cainst a speake which will "report" or throw back a fac simile of his words, as a likeness is thrown back from a camera-and that by an analogous process, only coarser, i. e. the vibrations of a more sensible fluid-why may not the one likeness be embodied and fixed in some way as well as the other? Why may not forces which rebound with such wonderful precision, be brought to make equally precise impressions? Why not a sensitive preparation to be fixed by rays or pulses of sound as well as of light? If this be attainable, there is evidently no difficulty in securing the reflection of the sounds upon it in all their perfection and with intensified force.
The difference at once strikes us, that so far as we know the action of accoustic vibrations is purely mechanical whereas we have lately discovered that in light there is chemical or actinic power, besides the supposed mechanical action that affects the retina. But how do we know that the sensible effects of luminous and accoustic undulations, or either of them, are of a mechanical and not chemical nature Who knows that the eye and the ear are not both labora tories, in which a chemical operation is performed in seeing tories, in which a chemical operatios is performed in seeing
and hearing, as much as in impressing shades upon a sensitive plate? Nay, is it not most probable, that seeing and hearing are or involve chemical processes, equally with tasting and smelling, breathing and muscular action? And if so, is there not probably some means of imitating the proces and fixing its results in the case of hearing as of seeing? Again, an apparent difference between the actual and the supposed art is that the one must in some way be bridged over into the other: the latter is complex, and includes both the former and some nexus between them which is precisely the undiscovered element in the problem. But this is per haps only a prima facie necessity, and thus the inquiry her branches of in two directions; on the one hand in quest of point of contact between accoustic operations and visible phenomena, through which audible undulations may regis er their effects in visible symbols; and on the other, of way for the accoustic impulses to be impressed upon second ary agents which shall give them back as the negative does
when properly called for and not otherwise. when properly called for and not otherwise.
If the latter were possible, a reciprocating pair of such agents; properly re-inforced in energy, could maintain the mpulses and propagate copies of them ad infinitum, and thu he speech of an orator would be handed down to all time and all mankind exactly as it sounded from the lips. All books worth reading verbatim would be read to the phono graph by elocutionary experts, and thenceforth read by the phonograph to the hearing (not reading) public, who would hus be saved the labor of reading, and perhaps the art itself would go out of fashion. But it is hardly worth while to nticipate just now all that might be hatched out of such an gg as that. Less extravagantly, we may surmise that a arbitrary language of phonic symbols might be constructed which dumb things could be made to utter a translatable Tho of human speech.
There are some advantages obvious to phonography proper compared with photography, as original questions. Ther is the wonderful ubiquity and uniformity of the accoustic undulations, precisely the same to an infinite number of hearers in an infinite variety of positions; whereas the undulations of light are confined to right lines of movement and no one of them can impress more than a single objecive point. There seems no more intrinsic difficulty in concentrating and intensifying the accoustic than the optical undulations, and if this were to become practicable, (by th dillow that a system imitation of the tympanum) it woul could carry human speech not only to indefinite distances but oo innumerable auditors. Practical attempts in the distant ransmission of the voice are now going on in France, as our readers are aware. But leaving this aside, the fact that an accoustic wave takes effect in all directions and at all points greatly facilitates the attempt to fix its effect. For, supposi mechanical or chemical appliance to be invented, so deli cately adapted that an individual accoustic wave would in some way make its characteristic mark. Let such sensitive points be brought into exposure and withdrawn in succes ion as rapid as the contractions of the stylo-glossus in speaking. Or let a surface of this character be covered with noving protector having a single perforation which should Every very wave would infallibly find its proper objective poin and make its mark in its proper order, and the intervals of
sound between letters, words and sentences, would be shown with absolute precision by the unmarked spaces, as in print The sensitiveness of flames to the accoustic vibrations, on which we had experiments so interesting from Prof. Tyndall, of late, suggests the possible application of gases, incandescent or otherwise, for registering sounds in a variety of ways, graphically; but they have also calorific, mechanical and chemical effects adaptable to the same purpose. Thus there are four distinct modes in which effects can undoubtedly be
transmitted through flames from the sounds of the voice. If
it be practicable to find adjustments of flame which shall re spond distinctively to each vocal sound and interruption, and with corresponding rapidity, it would seem much easier to register those responses in some of the various modes that register those responses in
already suggest themselves.
Other conjectures might be made, but we have said enough to stimulate thought and inquiry upon the subject enough to stimulate thought and inquiry upon the subject;
and as that is all we had in view in setting out with these and as that is all we had in view in setting out with these
cursory speculations, they may be dropped at this point as well as at another.

THE DANGERS OF OUR ARTIFICIAL LIGHTS,

It is becoming a matter demanding serious inquiry and possibly legislative interference what shall be done to preven the accidents so commonly occurring from the use of the com mon means for producing artificial light, or, at least, to dimin ish the danger. If a correct record could be presented of the atastrophes-the injuries to person and property-which have been caused by the use of gas, kerosene, camphene, and burning fluid the statistics would appal the reader.
Gas explosions are always the result of carelessness o thoughtlessness. It is probably the least dangerous agent for producing light since the relinquishment of whale and lard oil for this purpose, but the ignorance or the thoughtlessness of people make it sometimes a very dangerous substance Confined in pipes it is perfectly safe. It cannot explode no Confined in pipes it is perfectly safe. It cannot explode nor
even burn until mixed with the oxygen of the atmosphere aven burn until mixed with the oxygen of the athen the valuable quality of denoting its presence when mingled with the air we breathe. In this form it is danger ous, yet when a meter or the pipes located in a vault or dark ellar leak, it is too common a practice to enter the room with light to examine the leak, when of course an explosion takes place. This can be readily prevented by first ventila ting the room through doors and windows. There can be no excuse for these accidents nor for the blowing out of a gas light leaving the pipe open for the escape of the gas, a trick usually ascribed to country visitors to cities, but not seldom performed by those who should know better. Cases of death by asphyxia in sleeping rooms from this inexcusable careless ness are not unfrequent.
Camphene and burni
Camphene and burning fluid have been largely superseded by kerosene, yet they are still used to a limited extent, the luid being burned by a wick in the ordinary manner or used o generate a gas in the lamp itself. In whatever manne mployed these mixtures of alcohol and turpentine are dan gerous, as many fatal accidents have proved. We know of no method of preventing the danger attending their use, and are glad they are going out of fashion. But it may be doubted whether in exchanging them for kerosene we are no jumping from the frying pan into the fire."
Kerosene accidents are altogether too common. It would seem that this hydro-carbon might be made at least non-explosive; that it can be made non-inflammable is impossible without destroying its light-producing qualities. But many erious and fatal accidents are continually occurring by explo ions of kerosene lamps. A low distillation of the oil would easily remove the more etherial substances in its composition hich, at temperatures not excessive, generate an explosiv gas. There should be some simple means of testing kerosen o detect the presence of these volatile elements. Beyond hat, only care in the use of kerosene promises to avert its dangers.
It is commonly burned in glass lamps. Now glass is one ot the most unreliable substances known, and if not properly annealed will sometimes, even when untouched, fall in pieces as though shattered by a blow. Very likely many of the socalled explosions of kerosene lamps occur by the fracture of the glass lamp containing the oil. An eminent chemist tells is that a few days ago a glass bottle which he had used fo years, and which contained collodion, euddenly shivered int fragments while standing on a table where it had remained untouched for weeks, and a flask that he had used for distill ng benzine broke in a similar manner after it was laid aside The practice of blowing out the light when the flame i full, by throwing the breath down the chimney is pernicious. If the wick is loose in the tube the flame may be forced int the lamp and instantly ignite the surface gas or the oil itself. A better practice is to turn the flame down to a flicker and then blow it out. Lamps of metal would seem to be prefera ble to those made of so treacherous a material as glass, al though they are not so elegant.
It is hardly credible that manufacturers or venders of kero sene would willing deal in a dangerous article containing ex plosive elements, as their reputation and consequent profits depend upon the quality of the fluid, but the presence of naph ha and benzine in much of it now sold is susceptible of proof Legislative interference, aided by science, appears to be de manded as a protection to consumers; for it cannot be expect d that the people at large are to become analytical chemist in order to judge of the quality of the oil they use. Either his, or we must go back to the use of the old fashioned oil lamp, the breaking of which is attended with no more serious consequences than the formation of a grease spot.

OUR STREET PAVEMENTS.

In our issue of April 13th, we spoke somewhat in favor of the Nicolson pavement, our opinion being founded on the reports of its trial in Chicago. We have received several communications in relation to the subject, our correspondents being much gratified with our expression of opinion. A resident of this city says that the substitution of wood for stone, or the London Mc Adam for our cobble and Belgium pavements, is demanded on the seore of mercy to the horse. He asserts that the number of horses permanentlyinjured by our
stone pavements amounts to from 30 to 50 per cent, enough, if only half true, to pay for laying new pavements of wood every three or four years. He sees no reason why our streets could not be made as easy for horses and vehicles as the Park avenues, if paved on the Nicolson plan.
Another praises the pavements of Buffalo which are of the "Medina Rattlesnake stone" which has been well tested here and in Chicago.
We do not know the peculiar advantages of the Buffalo pavements, although we hàve visited the city several times, but there can be no doubt but improvements can be made on the pavements of New York. It would probably cost much oo transport the Medina stone to this city, while the material for the Nicolson pavement can be oltained at every lumber yard.

AMERICAN EXHIBITORS AT THE PARIS EXPOSITION.

The following list of the articles of American Manufacture contained in the sisth group of the American Department of the Exposition in Paris, embraces instruments and processes of common arts :
G. J. Wardwell, Ponltney, Vt--Stone channeling and quarrying machine.
 Whame

machine.
R . Allen $\&$ Co., New York.-One combined clipper mowing and reaping
mehine.
Walker A. Wood, Hoosick Falls, N. Y.-One self-delivering combined reapWalker A. Wood, Hoosick Falls, N. Y.-One self-delivering combined reap-
in wnachine
Joel A. Hall, Columbus, Ohio.-Cotton chopper, garden coltivator, Joel A. Hall, Columbas, Ohio.-Cotton chopper, garden caltivator, and
drill.
A.H. Wellington, Woodstock, th- Root catter.
Oscar F. Burton, New York.-On plow made in the style of the Moline

 and cleaner.
M. Allen
hoed crops. Son, Anburn, N. Y.-A horse hoe, for cultivating all kinds of
 Partridg Fork works, New York-Manure, spading, and hay fork,
rakees and potato diggras
beehives. beehiver.
Willam, Wallace \& Co., Syracuse, N. Y.-Johnson's Great We tern self-
rakmp reape.
Sam neel J. Wallace, Cart hage, Ill.-Grain binder, self-binding and raking
 John W. Free, Richmond, Ind.-Fanning mill and grain seed separator;
innoved tioe for grain and seed separator; improved straw catter; grain
and seed sower.

 to the grizzly bear trap.
George R. Baker, Sti. Louis, Mo.-Dough-kneeding machine, for family
 ironer月.
Metrolitan Washing-Machine Company, New York.-Washing and wring

${ }^{\text {er }} \mathrm{J}_{\text {Joseph }}$ Scdgebecr Painsville Ohio.-Farm corn meal Union clothes wring

 power. Andrews \& Bro, New York.-Oscillating steam enzines.
C.I.
Corliss Steam-engine Company, Providence, ... L. One Corliss steam en-
glne.

 ber and wood,
Phlander Ahaw, Boston, Mass.-Shaw's Union odouble-action air engine
James A. Rotinoson, New York.-Ericeson caloric pumping engine, 15-inch cylinder.
filill Bryant, Brooklyn, N. Y.-Bushing for ships' bl cks; hand grinding
mile \& T. Fairbanks \& Coo, New York.-Scales or weighing machines of va-

 ing machine.
Ce.L. Godard, New York.-One mestizo burring picker.
George Crompton, WVorcester, Mass.-Loom for weaving woolen fancy cas.

 Morris Opper, New York.- Power
irregular surface, such as
Orseta.

 se wing machine. single thread.
Henr y
bined Ped, Philadelphia, Pa.-American battonhole, cording, and combartrano \& Fanton Manufacturing Company, Danbury, Conn.-Sewing and
Fitonorole machine Forrence Sewinc.machine Company, New York.-Reversible feed, 1ock
stich sewing machine, with self-adusting tension, making four distinct
stitches.

their work.
Enl ptie
Hook Sewing-machine Company, New York.-Sewing machines,

 Brevet Major dien. D. H. Gucker, Chiet Quartegyasiter's Department of
Wahngton, D. C. United States Government army wagon and six ets of

 ed to regnlate and control the salety valves of the ooilers or lacomotive
steam engines.
Grant's Locomotive and Machine Company, Paterson, N. J.-Passenger 10 Grant's Locomotive and Machine Company, Paterson, N. J.-Passenger lo-
comotive engine and tender completee.
Halry W. Warne
railroadron.

EXTENSION NOTICES.

Isaac Brown, Cecliton, Md., ha Ying petitioned for the extension of a paten ranted to him the 19th day of July 1833, for an improvement in Mode o
Driving Saws, for seven years from the expiration of said patent, which take place on the 19 th day of July, 1867 , it is ordered that the said petition be heard at the Patent Office on Monday the first day of July next.
Enoch Hidden, New York, N. Y., having petitioned for the extension of a
patent granted to him the 21st day of June, 1858, reissued Sept. 8th, 1863, and atent granted to him the 218t day of June, 1858, reissued Sept. 8 th, 1863 , and
agan reissued March 15th, 1864 , for an improvement in Side Light for Ship 3 , for seven years from the expiration of said patent, which takes place on the 21st day of June, 1867, it is ordered that the said petition be heard at th Patent Offlce on Monday the 17th day of June next.

ISSUED FROM THE U. S. PATENT OFFICE FOR THE WEER ENDING APR L 16, 1867
Reported Oftcialy for the Scientifl Amerrcan
patents are granted for seventeen years, the followin hedule of fees:-
On flling each Caveat.

 of Canada and Nova Scotia pay $\$ 500$ on application.

63,779.-Mode of Unitina India Rubber with Leather.-
 (ovicanizing, as and for the purpose specified.
63,780.-SAW Mill-Asa Bee, White Oak, West Va.

 63,781.-Mold For Pipe Casting.-Menry M. Bird, Cam-
bridgeport, Mass. bridgeport, Mass.
 its core c , the whole being substantially as and for the purpose described.
$63,782 .-H A R N E s S$ Buckle.-George S. Caldwell, Syracuse, N. Y.
Tizlaim the combination and arrangement of the buckle as herein set forth,
whon the the jow
 63,783.-Axle Box.-Neil Campbell, (assignor to himself and
William Frazier,) Brooklyn New York

 63,784.- Machine for Making Drain Water Pipes.-Chas.
Collier, Charlestown, Mass.

 63,785-P Paper Fine.-Germond Crandell, Washington. D. C. equivalemt. Millstone Feed.- Michael DeCamp, South Bend,
65,786.-M.
Ind.

 set for th. The arrangement of a millstone feeder and a separator in the rela.
Third orne
tion on another substantiallyas shown and described and for tue purpose
 63,787.-SASH SUPPORTER.-Herman Ehle, Utica, N. Y.
Iclaim the employment and use of one or more rods or bars \mathbf{C}, attached to
 63,788.-Tresiing Machine.-George Eichenseer, Waterloo
Ill. I llaim. the combination of the screw bolts, a and a', substantially as and

 63,789.-Apparatus for Refining and Distilling Petro-

Leung, ETC.-John Ellis, New York City, and Edward
C. Hattell, Binghamton, N. Y. First, We claim the using of steam and super heated steam for the parpose
of separating and removin the more volatitilifor the liess volatile portions
of petroleana, kerosene, binzine, naphtha and torpentine, while these fliuds

