WHAT IS THE THEORY OF THE WATER POLISH?
This is a question of a correspondent, and although in our practice as a machinist we had, times without number, used water in taking the finishing chip for shafts, journals, etc., we had never considered the question. Uponinquiry of other practical men and of scientists we find the same ignorance prevailing, and, in their attempts to explain, a difference of views. These questions are valuable as leading to new improvements and discoveries. If a workman merely knows that a certain process will produce a certain result, without knowing the why and wherefore, he stands at the threshold of the temple and must ever remain in the outer court. The reason why can be found only within.
One theory presented is that the friction of the iron against the edge of the tool produces heat, however slowly the work is performed, and that the edge is therefore disintegrated and roughened which prevents it from leaving a smooth or rather a polished surface. That the only use of the water is to keep the edge of the tool cool and therefore intact. We do not accept this theory. To be sure water is sometimes used in turning iron for the purpose of keeping the cutting edge of the tool intact by preventing it from heating when a heavy chip is taken or the lathe driven rapidly. This use of water, however, is only a make-shift intended to facilitate work by however,
saving time.
If the only use of water in turning wrought iron is to keep If the only use of water in turning wrought iron is to keep
the tool cool, why is soapy water, or water containing a solution of carbonate of soda used in preference to clear water? They are of no lower temperature than pure water. Again, if the roughening of the edge of the tool is the cause of its not leaving a polish when used without water, this roughening must take place instantly; for every machist knows that without water he cannot leave a polished surface even in a part of one revolution.
We prefer to attribute the result of the combined action of the tool and water to lubrication. In ordinary turning the "diamond point" or "bossing tool" is used. Its action, as it is fed along while the shaft is turning, is to cut on the shaft a screw thread, differing from the ordinary screw thread only in being much finer than the thread of screws commonly used. However slow may be the lateral feed the result is a screw, if the diamond-pointed or V-shaped tool is used. Now the surface of the turned iron is a series of depressions and elevations; a longitudinal section wonld show serrated edges. To produce a perfect surface these projections must be removed. This is what the square-nosed finishing tool does. But this square-nosed tool, if used without water or oil, while it will leave a smooth surface, will not produce a polished one; the lubricator-water or oil-does this. The water fills the spaces between these projections on the surface of the iron and interposes between the tool and the solid surface; the finish cut merely scraping this solid surface.
That water is a lubricator cannot be denied, as itis the only lubricator that ever reaches the stern bearing of a propeller shaft, and it is used to lubricate the steps of the spindles of turbine wheels. The grease and alkali forming a diluted soap turbine wheels. The grease and alkali formi
in suds or soda water is a better lubricator.

3ectut gaterican aud foreign wateuts.

Latie.-H. L. Morse, New Bedford, Mase-The object of the to construct a lathe on which straight work may be turned as well as taper ing and the latter as good as the former.
Sllf-Lociting Apparatus for Ferry Boats.-James L. Canham, Newark, SBLF-Locking Apparatus for Frrry boars.-James L.
N. J.-This invention has for its object to furnish an im
lock by means of which the boat mav lock itself in the slip.
Dung Hoor.-Jacob G. Good, Rapo, Pa.-This invention has for its objec to furnish an improved hook by means of whrh the dung and bedding may be easily and expeditiously drawn out of stables.
Matriva.-John Michell, West Farms, N. Y.-This invention has for its
object to furhish a oheap and serviceable matting to take the place of cotton object to furhish a oheap and serviceable matting to to tike the place of cotton
and other mattings, and the coarser varieties of carpeting.
and other mattings, and the coarser varieties of carpeting.
macine for SAwing Shinales.- Rev. Enoch Conger, Lexington, obio.-
This invention has for its object to furnish an improved machine by means This invention has for its object to furnish an improved machine by means
of which one or more tapering shingles may be sawn from a block at on of which on.
operation.
Blind Fast rning.- Ebenezer B. Beecher, Westville, Conn., and Joseph G. Davis, Henry S. Frost and Anthony Davis, Watertown, Conn.- This invention has for its object to furnish a simple and convenient means by the use
which a blind or shutter may be securely locked in any desired position. Button for Fabtening Carriage Curtains, ritc.- - Solomon bidwel
Bordentomn N. J.-The objectof thisinvention Bordentown, N. J.-The object of this invention is to construct a device
Whereby earriagecurtains can be easily buttoned to the body of the carriage Whereby earriagecurtains can be easily buttoned to the body of the carriage
or to the bows of the wagon top, or to any other part of the carriage or vehicle, and whereby the curtain will be securely held in the desired plac but can be easily unbuttoned aguin when desired.
Serd Plantrr.-E. E. Chesney, Abingdon, Ill. This invention has for it
object to furnigh an improved seed planter by means of which corn or othe seeds may be planted accurately in check rows or in drills, as may be desire
Stoup Extrabtor.-M. Mellen. Richland Station, N. Y.-This invention re-
lates to a stump extractor which will do its work wilh the greatest efficiency lates to a stump extractor which will do its work wilh the greatest efficiency and which is so constructed that power may be applled to it on either side or on both as may be required, and which will furthermore allow of an easy
adjustment of all its parts and may be conveyed easily from one place to another.
CAR Coupling.-Nareigse Reaves, DuQnoin, Ill.-This invention has for it
object to furnish an improved coupling forrailroad cars which shall be sel object to furnish an improved coupling forrailroad cars which shall be self
coupling and at the same time simple and strong in construction and relliable in operation.
Window Sabi and blind Fabtener and Lock.-Leander Pollock, Fish kill Landing, N, Y.-This invention has for its object to fur
means for fastening and locking window sashes and blinds.
Back Rest for Laters.-H. C. Berry, Wauseo n, Ohio.-This invention re lates to an improvement in a back rest for lathes used for wood turning and
consists in a movable segment piaced vertically in the lathe in place of the ordinary back rest and provided with two adjustable friction rollers which bear against the piece of timber to be turned, and hold it steady.
Vrntilator for Railioad Cars and Buildings.-Robert C. Graves,
Barnesville, Ohio.-This invention relates to an improved ventilating apBarnesville, Ohio.- ${ }^{\text {This invention relates to an improved ventilating ap. }}$
paratus to be applied to ranroad cars, vessels, vehicles, public halls,
chatohes, dwelling houses, etc., and consists in a metal or other pipe run-
ning through the car, vessel, or building having funnel-shaped openings oid the outside for the admission of fresh air and provided also with pecuiar a rangements for directing the fresh air into a ca
through the pipe and for the discharge of foul air
Bottles Stopper.-RobertRobinson, Brooklyn, N. Y.-This invention has forits object to furnish an improved stopper that will close the bottle secure that the greater the pressure the closer and nrmer the stopper will be se cured in its place.
Madirine For Mrining Compositions.-Alburtis Eagle, Trenton, N. J.-The
object of this invention is to construct a machine in object of this invention is to construct a machine, in which two or more in-
gredients can be united promiscuously into a compound. It is chiefly intended for mixing powdered slate with tar, for a roofing composition, but may be used with equal advantage for other compositions.
Stale Cutrer.-William Dexter, Augusta, Ill.-This invention relates to a machine tor cutting up standing corn stalkson the fild, so that they may be plowed under the soil and rendered available as a manure or fertilizer, thereby avoiding the labor and expense of cutting them by hand and trans porting them from the fild, or piling them up and burning them,
Clayp for holding articles while being Planed or Milled.-S. A Morse, New Bedford, Mass,-This invention relates to a clamp for securing
articles firmly in position while belng planed or milled. The object of the artesionis to obtain a device tor the purpose specifled which will admit of
invent the articles being. not only clamped with faclility, or very expeditiously but also in proper position relatively with the cutting tool in every instance.
Alabm Lock por Tills.-D. K. Miller, Bernville, Pa.-The object of this
invention is to obtain a aimple and efflent alarm lock for tilla, one which invention 18 to obtain a ample and efflient alarm lock for tills, one which may be economically manufactured and applied and be capable of having a
number of changes or different combinatians efliected in, the arrangement of certain working parts so as to require different manipulations thereof in order to admit of the till being opened.
attachment for Vehioles.-Edward Nason, william Nason and Ohver K. Nason, Orneville, Me.-Thisinvention relaces to a draft attachment for
vehicles and has for its object the ready attachment of a horse to a vehicle and ready detachment therefrom, and a strons and durable construction a arrangement of parts.
AUGUR.-Charles Boernicke. Pliladelphia, Pa..-The object of thisinvention is to arrange an auger so that the hole bored may be gradually enlarged at
the bottom, for the purpose of more securely joining two pieces of wood. Colitivator and CosnPlantrib.--Ibaac h. Chappell, Lawrence, Kansas, Coutivator and Cosn Plantre.--Iaaac H. Chappell, Lawrence, Kansas.
-This invenition consists in so constructing and combining a cultivator with a corn planter that the ground may be culti
corn may be planted in the most perfect manner.
MatohSafe.-John Roebuck, Brooklyn, N. Y.--This invention relates to a match safe of simple construction, which is arranged with a design to cheapness and simplicity, while it answers all the purposes for which it is
intended. The invention consists in the arrangement and construction of a intended. The invention consists in the arrangement and construction of a
match safe, the lower part of which forms a match box and is closed by a falling lid, which is hinged in a peculiar manner. The upper part of the de derice is so shaped that it is capable of receiving and holding waste matches.
Cattle Puipr.- Miles D. Wilder. Laporte, Ind.-This invention relates to a which they aremade to pump the water which they drink from wells or res rvoirs in fields or yards.
Coornge Kettle.-Benjamin W. Dunning, Brooklyn, N. Y.-This inven-
tion relates to a simple and valuable combination of the ordinary and lodis pensable culinary kettles, pans, and pots used by every family, whereby all the heat is made available, the different parts being so arranged that each one Attachment to Sleds, eto.-Philip Bourne, williamsbridge, N. Y.-This can be readily propolled or moved over the surface of the ground.
Stove.-Obadiah G. Kennel, Ezrah Smith, and Gardner L. Morrison, New York City -This invention relates to stoves, in which gas, coal, and othe oils, etc., are employed and burned.
Bridle.-James Harris, Kansas. Ill.-This invention consists in the comb
nation with the bridle bit of tubes through which the cheek-straps pass. To nation with the bridle bit of tubes through which the cheek-straps pass. To those cheeks a pair of reins are buckled, whic
ordinary driving reins hung to the bit-rings.
Tool.-Philip Weck, Brooklyn, N. Y.-Thisinvention relates to a tool for seouring th
the cams.
Oning bell, oting the
thereto.
Boot Jack.-H. D. Boss, Willlamsbargh, N. Y.-This invention consists it the use of india-rubber witkin and around the jaws of a boot jack, for th Attachment for Stofe Pipe.--Ira S. Bullard, Geneva, N. Y.-This inven tion relates to a regulator for stove pipes, whereby the draft of the stove etc., can be more perfectly regulated or adjusted.
Corn Hobirina Shirld.-Almon C. Robinson, Louisiana, Mo.-The object of this invention is to provide a metal shield to be worn on either thumb for protection of the hand against the rough cutting surfaces of corn husks, Fhen
they are stripped fromithe ear, and to expodite the work of corn husking by are efective operation of the instrnment than that of the naked hand. Glass Cleaner.-J. B. Dunlop, New Haven, Conn.-The object of this in
vention is to provide an article for cleaning glassand other substances, on the surface of which have accumulated hard stains of paint, dirt, etc. For this
purpose I have a small plate of metal, such as hardened iron or steel, on the purpose I have a small plate of metal, such as hardened iron or steel, on the
upper side of which I form a handle by which the cleaner is held. On the under surtace or face of the cleaner I form flutes or V-shaped grooves,which run diagonally across its face, and form a series oi knife edges thereon; be
tween each groove is left a flat surface, in order to prevent the glass or othe article from being cut or scratched. When this cleaner is brought in contac with a pane of glass on the surface, on which have accumulated stalns of paint or other su

Ausivers to Cotrespoudents

J. B. M., of Ind., certifies to the good effect of cold water in alleviating heart burn. He takes it in doses of about 2 oz. every 5 minute
F. C., of Ind.-We have heard of castor oil for softening and proserving leather, but never tried it. We oan recommend good neati foot ofl as excellent.
A. D. B., of Mass., asks: "What is the actual horse power of an engine, diam. of cylinder, 181.8 inches ; stroke, 80 in.; revolutions pe
minate, 72 ; pressure of steam in boiler 80 ibs.; steam eut oft in cylinder halfstroke." Your question does not contain all the data necessary to correot answer. You say you have 80 lbs.in the boiler; you do not sa
whether you have a governor throttle between boiler and cylinder no Whether you have governor thenth and size of steam and exhaust pipes. If, however, you ge yourboiler pressure- 80 1bs.-on yourpiston outting of at halfstroke, the 99.078. The indicator is the only reliable method of determining the amoun of power developed by your engine.
E. B. C., of Conn., asks if the pressure on the lower part of a steam boilerisgreater or less than in the upper part, the welght of water
not being considered. As we understand it, the pressure of stoam is the s. S of N. Y ine in Why not?
C. F. S., of N. Y., asks: "What is the rule for calculating the speed of pulleys driven by belts from larger pulleys?" We reply: AB the speed of the driver is to that required for the driven, so is the diameter
of the driven to that of the driver. Ex. A pulley 36 in. diameter turns 150 of the driven to that of the driver. Ex. A pulley 36 in. diameter turns 150
times per minute. Speed of t iedriven to be 450 . Required, size of driven pulley. As 150 is one-fourth of 450 , so the ariven should be one-fourth the driver $=9$ inches, . . . The best oill we know of for valves and cylliders is good sperm or lard oil. Pure tallow is also good, as the heat of the engine keeps it in a liquid form.
C. R. C., of Pa.-In Wheatstone's and Siemen's experiments described in:No. 14 Vol. VI complete magneto-electric machines were em-
ployed The obscurity of the notice occurred from omitting to say that ployed The obscurity of the notice occurred from omitting to say that
the armatures were combined with magnets in the usual way. The error was the fault of the forogn reports.
P. D., of C. W.-Three methods have been used for deter mining the quantity of stoam used by an engine. 1st. Measuring the water
wilch is put into the boller. 2d. Using as data for calculation, the cubica capacty of the cylnder, num 3. The use of the indicator. The last method is the most accurate and least troublesome. But when great exactness is sought for, the thre against the errors of either. diameter can be put into a cabical box one foot on a side?" This is a very
good nut for the juveniles to crack. J. D. H. has been informed that a large prize has been offered for a solution of the problem, but we do no
J. W. L., of N. Y., supposes air to be condensed in a cylinder to half its volume by pushing down the piston half way, and anothe cylinder with piston same diameter, but half the length. Now let a quan
tity of compressed air equal to that in the first cylinder be let under the tity or compressed air equal to that in the irst cylinder be let under th
piston of the second cylinder, will it have as much effect as the compresse piston of the esecond cylinde
air of the first? Certainly.
A. C. R., of N. Y.-" Does the axis of a vertical wheel in motion impinge on the eame points of its bearing that it dofs when in re-
pose?" No. The tendency of the wheel in motion, is to roll up one side G. B. M., of Iowa.-Your cellar seems to be damp for wan of ventilation. If this theory be correct, you can no doubt easily prevent
the evil, by means of some simple arrangement of partitions and inlet the evil, by means ot some simple arrangement of partitions and inlet R. S. T., of Mass.-1. The sphere and spheroids were once common forms of the electrical machine. They are not so convenient as cylinders. 2. Leyden Jars coated with the amalgam used for mirrors
would operate pretty well, but it would be very difficult to make them. d. Substitutes for the Leyden Jar are often made by coating flat glas plates. 4. A battery may be made by arranging the jars concentrically
in a nest. In this case the jars of course must be wider at top, than at the
E. V. W., of Pa.-If you boil tar the more volatile portion is expelled and the residuum is pitch. The pitch or asph
often called, of coal tar la used for rooflig and as a cement.
J. P. B., of M.-The ordinary oil paint seems to be in most common use for marking by the stencil plate. All colors of pant work well. ency also answers the purpose.
J. H., of Minn.-Rancid butter is much improved by reworking in ice cold water. The sweetening is hastened by adding to the
water a small quantity of bicarbonate of soda. A. T. B., of Mass.-We are not aware that any distinctive name has been proposed forthe solids which have an elliptical base.
C. A. G.-Only the inventor or his agent can obtain informapatent. W. S. M., of Ohio.-1. Emery is used in grinding lenses and rouge in polishing them. 2d. The best cast steel should be used for the
springs of fre arms. Sd. Paper is made sonsitive to light by bru hing over springs of fre arms. Sd. Pap
it. solutions of salts of silver
J. M., of N. Y.-" Which would be the easier to drag up grade $\mathrm{s}, 000 \mathrm{lbs}$. on 44×48 inch wheels or the same weight on 48552 inch grade s,000 los. on 44×48 inch wheels or the same welght on
wheels. Or which will run easier up grade elarge or small wheels." The ef
fect of wheels on vehicles is simply to lessen the frietion of tre draft, and fect of wheels on vehicles is simply to teessen the frietion of the draft, and
large wheels are more eflcient than small ones. The size of wheels is de large wheels are more efflcient than mall ones. The size of wheels is de
termined, however, mainly by the hight from the ground of the line of draft, in other words the hight of horses. In going up or downgrade the same
be of be of practical importance, as the direction of the weight of load with re
ferenee to the axes of the wheels would be changed. The more direct an swer to J. M.'s questions would involve more data than he has given, such
ing artilicial stone, but we have not yet learned that any of ther making artilicial stone, but we have not yet learned that any of them have proved entirely satisfuctory or a commercial success. The anclent pro
cess of baking clay into brick has stood the test of all ages and is scarcely to be hoped that we shall have any succeatul rival to brick. A. D., of Mass.-Starch water spread on glass makes an ex cellent substitute for ground glass to be used in backing up stereo-trans G. H H., of Mich. -1 . When heated from 32 deg. to 212 deg zinc expands at the rate of 1 in 940 , lead 1 in 851 , silver 1 in 524 , brass 1 in
536 copper 1 in 582 , untempered steel 1 in 926. 2 . The rate of expansion in 596 copper 1 in 582 , untempered steel 1 in 926 . 2. The rate of expansion in creases sliflitly at higher temperatures. Sd. It will be seen from the
above fgures that thereis no defliterelation above tgures that thereis no defnite relation between the specific gravit
and expansibility. 4. Tubes and rods expand in length at the same rate 5. The temper of metals affects their expansiblility. 6. Address Hear Carey Baird, Philadelphia, for a treatise on watch making.
H. L. N., of Mass.-" Fill a wine glass so full of wine tha another drop will make it overfiow. Now you may drop into the wine as many aeedies as andy glass of the same size can hold, and the win will not overtlow." Something like the above is con tantly floating abou in the newspapers, and it has been so often repeated that a great many ence or experience. A needle or any other solid bods, in prement from scl
en bulk, will displace the liquid in which it is immersed.
W. P. B., of Wis.-Naked wire was much used in the early days of electro-magnetism for making helices. With proper care in wind ing, electro-magnets so made are quite as good as others. The layers of the helix are well enough kept apart by common paper. Silk thread used fo the same purpose would be no improvement. A dozen Grove are required to give a satisfactory light from carbon points.

Whaintas and extronal

R. Miller, Perth, Lanark county, C. W., wishes to communi cate with manufacturers ot screw and stud machinery, separately or com
bined. A. Tweedy, Collinsville, Ohio, wishes to correspond with an

Horizontal Cotton Press.

For transportation of bulky bodies, as cotton, hay, and cloths, the work of compressing into convenient sized bales is almost imperative. Facility of handling as well as econo. my of room is thus assured. The screw is often used for this purpose, but it is well known that the power to be exerted increases with the resistance to be overcome, so that there is a limit to its use. The hydraulic press is costly and not always convenient to procure. The engraving represents an efficient baling press so simple in its parts and operation that it may be constructed on the plantation or farm by any one with ordinary mechanical skill. Its combination of levers gives it immense power and its operation is certain.
A suitable frame of timber is secured to the ground or the floor of a building, upon which is mounted a box, A, by being pivoted by a cross brace to the uprights, B, to allow it to take a horizontal or nearly perpendicular position. In the back end of this box, when in a horizontal position, enters a follower, C, which nearly fills its cross section. This is connected by a pivoted bar to the lever beam, D, pivoted to an upright standard at E, and connected by a bar to the traversing lever, F. This lever's weight is sustained by a roller which moves over the segmental platform, G. At the extreme end of the lever is a rope connected by a hook, and winding on an upright windlass or capstan, which may be turned either by manual labor or horse power.
In operation, the box, $\mathrm{A}_{\mathrm{r}} \cdot \mathrm{j}$ turned into a nearly perpendicular position and the hay or cotton pressed in until full ; it is then swung into a horizontal position and the follower, C, inserted and brought home by the leverage. That portion of the box, A which holds the bale has a hinged top and bottom, the former seen open in the engraving, for convenience in roping or strapping the bale and for delivering it when fin ished. The windlass on the rear of the machine is for "tumb ling" the box, A, which is done by a cord attached to the box and winding on the windlass beam. The top and bottom of the receiver are held in place, when closed, by a double swiv el latch and the box is secured when in a horizontal or vertical position by a suitable catch. This apparatus was patented through the Scientific American Patent Agency, Oct. 2, 1866, by John I. Williams of Meridian, Miss

Comstock's Lumber Wagon Rack

When drawing lumber on wagons for short distances the labor of loading and unloading takes more time than to con vey the load. Two men are necessary to load and to unload ; one must be on the team and one on the ground. The employmen of a roller near the driver's seat and one at the rear of the wagon at different elevations to give th load a backward incline is ofte used, but the binding of the load, its unbinding, and dis charge still required considerable time and labor.
In the rack represented in the engraving the body of the wagon is inclined by means of bolster of differing hights, that on the forward end being the on the The upright stakes are pivoted to the sides of the frame and in them turn the pivots of the rollers. The uprights, A and B, are connected together by pivoted bars at their top so tha they move in unison, and the rear uprights may be connected to B by lines which pass over pulleys on B, or through staples, and from these they can be attached to the chains, \mathbf{C}, whic are intended to be wound up on the shaft forward of the stakes, B, which shaft is turned by the crank, D, and held in position by the ratchet and pawl seen in the engraving. By a forward movement of the uprights, A and B , and back ward of the rear stakes the rollers are lifted from the bol sters and allowed to turn free, which assists in the process of loading. This position of the stakes and rollers is assured by hooking the hooks of the lines into the chains, C, and turning the crank, D. This compels the rollers to bear the weight of the load. The diagonally affixed pieces on the sides of the wagon near the middle and rear uprights, pretent them from moving back too far when the rollers are raised. The pivots of the stakes, A and B, are in the rear of those of their respective rollers, and those of the rear stakes are forward of those of that roller. This gives an eccentric motion which insures the raising of the rollers and also th easy seating on the bolsters to prevent their turning.

When the rack is loaded the hooks of the ropes are disonnected from the chains, allowing the rear stakes to be forced back by the load which will bear on the rear bolster at the same time the middle and forward stakes are released, so that the remainder of the weight is taken by the middle and front bolsters, a movement which is aided by the springs, E , bearing against the forward stakes, A. The chains are then passed over the load and one of the hooks passed through a link of the other chain and secured by winding the chain by the crank which is held by the pawl and ratchet. In unloading, the chains, C , and the ropes are connected, and by

WILliams' horizontal cotton press.

turning the crank the load is supported on the rollers, which discharge it in a compact pile
By a long test with these devices it is found that half o more of the labor and time is saved than by any other method in use for loading, teaming, and unloading lumber. This improvement was patented through the Scientific American Patent Agency, February 5, 1867, by Charles C. Comstock Grand Rapids, Mich., whom address for additional facts.

Probing Gun Shot Wounds.

From Dr. V. Gelcich of Los Angeles, Cal., we have received a communication relative to the above subject whichis worthy of notice. He says that there is much difficulty in discriminating between bone and the ball by the use of the ordinary probe. His probe is simply a piece of white pine wood, made in the shape of a probe, introduced into the wound, rub, bed against the suspected object, and quickly withdrawnwhen, if it has touched the ball, traces of lead will be found upon it. He says, by this simple instrument, while a medical They also incline to bawl."

COMSTOCK'S LUMBERI WAGON RACK.
officer in the United States Army, he saved the limbs of two men on whom amputation was about to be performed for gunshot wounds in the lower extremities; what was long supposed to be bone proving to be lead by the aid of the white pine probe.
A porcelain probe has been used to show the presence of lead in the same manner, but it is probable that a softer substance like wood is better. At least where the channel made by the ball is straight, or nearly so, and in many cases where a probe is not at hand, this, which could be extemporized from a bit of wood, would prove extremely valuable. In cases where the ball did not take a direct course it seems as though a piece of pine wood might be secured to the metallic probe and do its office in a superior manner. Dr. Gelcich offers his discovery to the attention of surgeons.

Science and Art in China.
These curious people (the Chinese) are at once remarkably knowing and ignorant. They have, for instance, as wide an acquaintance with Materia Medica as we, and perhaps as much knowledge of properties and effects; but they have no reasonably philosophy of treatment and next to no knowledge of pathology, physiology or anatomy. Their physicians think every pulse they find an independent manifestation; having no idea of the circulation of the blood. A physician would undoubtedly be put to death if he attempted to dissect the human body, and surgery is unknown. Prescriptions are potent according to the multitude of ingredients, often from fifty to eighty, which they stew all together and then administer The blood of any animal is a fa vorite specific for deficiency in qualities that distinguish that animal. The medical art is mere ly a trade, in which every man keeps his knowledge and discov eries secret for his own benefit a condition sufficient of itself to account for its backward and ut tcrly unprogressive state.
A more amusing illustration is the deficiency of this most ingenious people in the art of music of which they seem to have no idea, and yet they must possess abundance of musical capacity from the fact that under the cir cumstances they can be taught a tune at all. A gentleman in Hong Kong is teaching a Chinese class to sing, and has succeeded in creating from it a choir for the Union Church which can sing a simple tune at sight, without error. He thus describes the state of
"I believe this to be almost the first attempt to teach the reading of music to this wonderful people. The Chinese themselves have notunes and no idea of music. Their instru ments can only produce two or three tones, and their singing is screeching in falsetto to no kind of tune. Their voices ar harsh to a painful degree, and their talent for fiattening wonderful. They must never be asked to go above \mathbf{D}, and after half an hour's singing lose all command of their voices

Trichiniasis.

The scavenger habits of the rat certainly render the contents of his entrails living poison to the viler anima that devours them, and thus a prolific source of trichine in swine. A committee of the Vienna Medical Society have made an elaborate report in which they maintain that the disease also originates in the rat; a large percentage of rat examined in different towns and countries having been found trichinized. It is also found that the germs of trichinæ may be conveyed frominfected meat to other food by the larvæ of flies which shows how a rat or othe animal may become trichinized without eating either trichinized flesh or intestinescontaining germs Prof. Brown, in a lecture before the Society for the advancement of Sci ence and Art, in this city,stated tha this parasite originater almost en tirely in the swine, and is there in visible to the naked eye. When flesh containing the trichinæ is in troduced into the human stomach the flesh is dissolved and the para site unloosed from its cell. When this occurs the parasite is about on thirtieth of an inch in length. Birth is then given to trichinæ, which straightway proceed to penetrate the whole muscular and flesh sys tem through the alimentary canal. These young trichinæ are at firs only $\frac{1}{5+6}$ of an inch in length, and resemble a worm in spiral coil. By the time they traverse the system however, they increase in size many fold, and then begin to make felt that terrible disease to which the have given the name. As first introduced into the animal the cause trouble only by the production of their offspring. Th disease is first made apparent by pains in the joints, the head, and the spine, and the patient gradually wastes away and dies The trichinæ do not create disease by eating away the flesh -which they are not fitted to do-but by hindering or closing up the forcesand processes by which health is preserved. From one of the limbs of a girl who had died in this manner lately in Springfield, Mass., a portion of muscle was detached and sub jected to microscopic examination. A square inch of this disclosed from 30,000 to 80,000 trichinæ.

Welding Composition.-Fuse borax with one sixteenth its weight sal ammoniac, cool, pulverize, and mix with an equa weight of quicklime, when it is to be sprinkled on the red hot iron and the latter replaced in the fire

