Scruwera

MUNN \& COMPANY, Editors and Proprietors.

NO. 37 PARK ROW (PARK BUILDING), NEW YORK.
O. D. MUNN, B. H. WALES, A. E. BEACH.

or the SCIENTIFIC AMERICAN. 60 Paternoster Row, London, are also Agents
VOL. XVI., No. 12. . . [New Series.] . . . Twenty-first Tear.
NEW YORK, SATURDAY, MARCH $23,1867$.

CAUTION.

It has become necessary for us to state very distinctly that the Scientific American Patent Agency Offices are at No 37 Park Row, and not at No 39. Our reason for making this announcement will be made to appear by reference to a notice published on page 172, last number, under head of " Police Intelligence."

SPECULATIONS ON THE FUTURE.

The able Editor of Engineering follows up a review of the more recent achievements in the arts with an outline of those which seem to be indicated as next in order. Farming must become a branch of engineering, with its recognised professors and professional authorities, and advanced means of improvement. Little or no waste land must be left in England. Besides steam plowing, underdraining, sanding clay and claying sand, and sewage irrigation, the agricultural engineer is to saturate the soil with carbonaceous and nitrogenous elements by penetrating it with the products of the combustion of slack oal led through the land in flues. Land will yet be made to possess almost unlimited power of production.
We must dismiss the lumbering system of "trains" for high-speed traffic, and resort to a single vehicle combining engine, tender and carriage, in which fifty passengers may go at an average rate of sixty miles an hour at moderate cost, an with but forty or fifty tuns of total weight in motion. (The obstacle to rapid traveling on railroads at present, is the great weight and unsteadiness of the vehicles, involving an enormous waste of power and increase of risk at high speed). As for goods traffic, except express freighting, we must go back to and modernize water carriage, penetrating all parts of the country with a water system, of rivers and canals, for steamboats of 250 tuns burden. A new class of ocean steamers must be had, 500 to 600 feet long, twin-screwed, and driven at the rate of 16 miles an hour, making the Atlantic passage in an average of eight days. The only requisites want ing to success in such steamers, are a full line with regular A single ship like the Great Eastern can never be filled up, A single ship like the Great Eastern can never be filled up,
because nobody wants to wait for her to the end of a month or because nobody wants to wait for her to the end of a month or
six weeks, when inferior steamers are sailing every two or six weeks, whe
three days.
In regard to motive power, thousands of readers would be astonished if it were now published who has said that thedays of steam are already numbered, and that hot air is to become the great motor (pending the subjection of electricity to the yoke).
Probably few have formed any conception of the immense change in building which is to follow the recent perfecting of artificial stone. It has been exposed to every conceivable trial, by boiling, freezing, acids and foul gases, with some four years practical use, and appears to be unalterablean almost incomparable stone, in all the artistic forms and col ors that may be desired, at a cost less than that of brick. Hy draulic elevators are referred to as destined to supersede the use of stairs, to a great extent and to a vast saving of weary,
slow and unprofitable toil. slow and unprofitable toil.
One of the grandest improvements that must now be imminent, is the perfection and general adaptation of the Bessemer process, for the conversion of all kinds of iron direct from the blast furnace into bars and castings of steel, with mechanical treatment of whatever character in the melted condition. Mr. Bessemer himself has made excellent tin plate sheets, which would fold like a newspaper, one fold across another, without cracking at the corner,-merely by pouring the con-
tents of a crucible of melted steel between a small pair rolls without any other working whatever!
In warfare, the day of piston shot and gigantic guns is com ing. A 20 -inch shot will be fired from a 40 -inch gun ; a shot of a tun weight, with an initial velocity of 1,600 feet per sec ond from a charge of 450 lbs ., with but little greater destructive strain upon the metal of the gun than in the old fashioned cast-iron ordnance, and with an effect of ninety-million foo pounds, sufficient to punch a 20 -inch hole in a good wrought iron plate 28 inches thick, and to go through any now existing iron-clad like a wicker basket! There are (says the wri ter) clear and demonstrable principles on which such guns may be constructed. In the field also, great changes are be fore us, not only in riffes but in bullets, in which the explo sive principle is yet to be applied with all its terrible efficien cy.

the rights and wrongs of the patent office

The Report of the Commissioner of Patents, which we re publish in this paper, is important enough and short enough publish in this paper, is important enough and short enough
to be read by everybody, and we could especially wish it read to be read by everybody, and we could especially wish it read
by every member of Congress. Eloquence could add nothing by every member of Congress. Eloquence could add nothing
to the almost pathetic facts which make up this unadorned to the almost pathetic facts which make up this unadorned
statement, or one would be tempted to wish the Commisstatement, or one would be tempted to wish the Commis-
sioner had taken the opportunity to urge the just complaint sioner had taken the opportunity to urge the just complaint of the Inventors more at large. In the first place, there is the tabulated history of the institution, in figures, for thirty years. And what does it show? Why, that the Inventors of but making wathy only "一 gense built up unaided this na tional monument, illustrious already in other lands, out of their own pockets have largely overpaid all its expenses and erected a magnificent building for its use, and at this day, with a surplus of $\$ 264,125$ of their money in the hands of the Government, their important business lies neglected month after month, with fees pre-paid and interests often perishing by delay-because other departments have taken possession of the Patent Office building and crowded its le gitimate business almost out of it, in a stifling corner wher it cannot be transacted.
And this injustice and cruelty are aggravated every day with the increasing activity and beneficence of the inventive genius which is thus encouraged (!) by the United States. The cash received from inventors last year amounted in round numbers to half a million dollars: the application fees exceeded those of 1865 by nearly fifty per cent, while the caveat fees ex ceeded by nearly two hundred per cent, and the total receipts by more than forty-two per cent! At the present rate it is cal tWENTY THoussand. How is the business to be done? Without prompt provision for more room and force it cannot be done. The plain question is: Gentlemen of the Senate and House of Representatives, do you intend to tax invention, and that retrospectively, for the benefit of the general treasury, or do you intend to give that great element of public welfare simply free and fair play, on paying its own expenses? But taxed or untaxed, inventors claim at least the common rights of men-that when services are agreed on and paid for, they shall be performed and not neglected. Name your price gentlemen, but in the name of common honesty let the work be done.

MISTAKEN ECONOMY AND POOR MATERIALS.

Every successful manufacturer, particularly the builder o machinery, well understands that it does not pay to employ poor material any more than to turn out poor workmanship yet it is too often apparent that men will jeopardize their reputations as workmen by using materials whose only advan tage is a slightly reduced cost. In machinery this practice i reprehensible, for not unfrequently life as well as property is at stake, and not always is the end desired-diminished cost -reached, the poor material sometimes being really no cheaper than a better quality. The saving effected by the use o cast iron crank shafts and connecting rods on a small steam engine is very slight, while the danger of fracture and disaster is great. Strength, lightness, proportion, and durability are all sacrificed to the saving of a fewcents or dollars. Even the reputation of the builder is risked and his character impaired for this paltry consideration.
A few days ago we saw a turbine wheel the upper boxes of which were held against the vertical shaft by wedges of cast iron. These wedges were perhaps ten inches long by two
and a half wide and one inch thick at the heavy end. Cer tainly they cost a trifle less than they would if forged from wrought iron, but in moving the machine one of them had broken off and probably the other would follow on the next removal. The purchaser would be compelled to replace them by forged wedges or wooden ones, which really would be preferable to those of cast iron. The shafts of grindstones for shop and farm use may be well enough, if properly propor tioned, made of cast iron, but who would not be willing to pay more for one forged from tenacious wrought iron? Many who purchase such articles do not know the difference be tween wrought and cast metal, and it is these who are im posed upon. Their confidence in the dealer or the make once shaken, they shun them thereafter, and then the maker or seller suffers.
Undoubtedly there are many cases where cast iron is fully equal to wrought, where either may be used, but the practice
so common of substituting the inferior material for that best adapted to the work to tent, sometimes the extra work on the inferior article making its cost fully equal to that of the better material. There can be no true economy in this, and neither is it goodeconomy to
pursue this plan even when a trifle of the first cost may be saved. Sooner or later the wares of such workmen become drug in the market, while the conscientious manufacture will in time build up a reputation which will prove of more value to him than his money capital
The market is full of miserable counterfeits ' made to sell.' So-called plated ware, revealing the base material before th gloss of newness has disappeared ; brass jewelry, corroding a the first touch of moisture ; tin ware, thin as vanity and soon eaten through and through ; wooden ware gaily painted with evanescent water colors to go at the first handling ; indeed, so common has become the practice of employing poor material that it is absolutely difficult to obtain a grood article, as tin ware, for instance. Surely a reform is needed, and he who will in any of these departments of industry manufacture and put into the market a really good article at a fair price and profit, will find a return in the support of an appreciative and humbug-ridden public.

"OZONE."

This is one of the comparatively recent articles in the repertory of science, having been introduced thereto only about twenty-five years ago. As its name is more and more frequently occurring in chemical notes and disquisitions, to the mystification of most persons not professionally read in such matters, it has seemed good to us that the lay reader of the Scientific American should not be any more mystified in the matter than are the savans; and that is undertaking to give them only a very little knowledge indeed, with per haps a slight addition of plausible conjecture.
That which may be said of this important but obscure sub stance, is included under three divisions-its history, its na ture, and its uses. It was discovered by Schönbein, who named it from the Greek participle ozon, smelling, by which property it first announced itself to us. The peculiar odor like sulpur or phosphorus, attendant upon a copious evolu tion of electricity, natural or artificial, had been observed to be attended also by certain chemical effects, such as the de composition of iodide of potassium. In 1840, Schönbein an nounced that precisely the same evidences of a mysteriou chemical agent appeared at the positive pole of the batter (if of platinum) when water was decomposed by electricity and moreover that he had intercepted the agent and confined it in a bottle. I'en years later, he had discovered that it wa volved in the slow combustion of phosphorus and of ether and might be detected in the atmosphere as the result of electric changes. Faraday took it up, and subjected its sup posed properties to a strict test by first passing it through a solution of potash to arrest any possible acid which might have been the chemical re-agent, and finding the chemical effect still the same, established its distinct character beyond uspicion.
We will describe the usual test, by which any one may measure the indications of ozone in the atmosphere at a particular locality or season, and thus obtain important evi dence, perchance, on the question of salubrity. A strip of sof unsized paper, or muslin, after being starched in the common way, is dipped in a solution of iodide of potassium. No sub stance common in the atmosphere, except ozone, attache itself to potassium energetically enough to break its union with iodine. But wherever the test paper is exposed to the influence of ozone, the potassium isattracted and united to the latter, so that the iodine is set free, and its native violet color appears in the starch, which first turns brown, and on being moistened shows different shades, from pinkish white and iron gray to blue, according to the amount of ozone in ac tion. A standard chromatic scale, covering ten degrees of color, has been made, with which the tints of the wetted test paper may be compared, and the relative proportions of ozon in the atmosphere thus measured
The wonderful delicacy of this chemical action is realized by considering that the characteristic odor is perceptible when the air inhaled contains but $\frac{1}{500}$ part of ozone, and ye the four lower shades of the test, at least, are obtained from the ordinary odorless atmosphere! This effect from such inappreciable quantities suggests also the marvellous powe of the agent, which impresses us still more forcibly on finding that (if we may credit a statement we have seen) an intermixture oi $\frac{1}{500}$ part of ozone in atmospheric air ren ders it quickly fatal to animals breathing it. To the human respiratory organs it is highly irritating, and produces catarrh in proportions far below the "smelling" point, and this with its presence in all wholesome air, seems to intimat hat it may be the true excitant of animal life.
To our second inquiry-what is it?-chemistry as yet an wers vaguely. At first it was supposed to be a new element afterward a superoxide of hydrogen, and it has been settled but lately that oxygen is another of those substances, as car bon and boron, which exist in a trinity; ozone being one extreme, antozone the opposite, and the common form of oxygen, the mean. In the peroxide of barium, for instance it is found that the metal has been oxidized or rusted by ozone; while in the peroxide of manganese there appear evidence of antozone or an oxygen which acts differently from both that combined with barium and that found in ir or water. The most remarkable indication of the na ture of this element, is the fact that pure dry oxygen i entirely converted into ozone by a silent current of electricity and then, by a continued application of electric sparks, or by moderate heat of 450 to 500 degrees, it is entirely re-con verted to oxygen; as indeed it may be, in whatever manne it has been produced.
Finally, what are its uses? It is oxygen par excellence that king among elements which subdues them to the pur
poses of nature and life，exalted by electric force to a hight of aggressive energy which consumes decay and corruption，and seems to attack the sensitive tissue in living organisms with a stimulating power that imparts through every organ the sense of refreshment and invigoration attendant upon the ＂clearing［ozonizing］of the atmosphere＂by a thunder storm．Its gradual disappearance from the atmosphere marks the approach of malignant epidemics，such as Asiatic cholera， and its appearance is the signal for their abatement．Dr． Moffat＇s observations of the ozone in the atmosphere before and during the cholera epidemics of 1853 at Newcastle and 1854 at London，established these coincidences with the greatest precision．The south wind that springs up at length， fter such a stagnant and sickly season，and brings what we call purifying thunder showers，is proved to be an ozonized wind，and directly the starched paper in the wind feels the action of the liberated iodine and begins to change color，the epidemic begins to abate．
The putrid matter that may be collected from the exhala－ tions of animal or vegetable decay，a very little of it，will tions of animal or vegetable decay，a very little of it，will
kill a dog．The only conceivable way to neutralize this poison in its aëriform state（at least，without suffocating all creatures that breathe）is to oxidize it by the wonderful energy of an imperceptible ingredient of ozone．Its action， when it comes on the life－giving wind，is instantaneous， universal，and complete．The air of regions proverbially healthy，as highlands and seacoasts，and wherever the circu－ lation of the atmosphere has freest course，is found to be the most abundantly charged with ozone．Its presence gives the night air its stimulating power，so much courted by writers and lovers of pleasure．The exhilarating breath of winter is laden with it above all seasons of the year except that of May ；and autumn，when all nature begins to decline，parts with the ozone until its minimum is reached in cheerless November What shall we do to woo back this Life－Angel，in the time and place of mortal need？We know how to warm a cold place，light up a dark one，moisten a dry one，fertilize a bar－ ren one，and provide ourselves in a thousand ways against efect or excess of the elements，and must advancing science still leave us dependent helplessly on the movements of na ture for vital air？

VOLUNTARY POLICE ASSOCIATION．

The Society for the Prevention of Cruelty to Animals has in directly extended its beneficence to a class of creatures whom railroad men at least appear to regard as strictly wichin the scope of its terms－the animal Man．The bill offered by the society to the legislature of New York，forbidding two－horse omnibuses to carry more than twelve，and two－horse cars more than twenty－four passengers，is a measure of mercy to man and beast．

We hope this kind of good work may go on，and branch into various development．Even in strongly governed Eu ropean countries，it is found that many outrageous abuses not directly taking life or property，can be brought to the bar of justice only by voluntary police association．In this coun try we are full of such abuses．We are strangers to the sen sations associated with clean and orderly streets，unobstructed sidewalks，regulated and responsible public service，from gov ernment down to common carriers，and a hundred othe things which older governments recognize among the end of their existence，and＂subjects＂expect as their unques tioned right．
The London Street Reform Society has just issued its pros pectus，proposing to collect and publish facts，expose abuses agitate reforms，enforce and improve existing regulations， and take a general oversight of street arrangements，vehicles raffic and sanitary matters．Such a society would find magnificent field of public beneficence in the city of New York．We have our Citizens＇Association，it is true，which
has done and is doing incalculable good：but there is only too much room for others of less general character，besides the humane society to which we at first alluded．It seems evi dent that henceforth voluntary associations for public im－ provement and reform are to be the medium for the public spirit of our more thoughtful and influential citizens．They owe a participation in local public affairs，both to themselves and the public，and happily this way of getting at it is as effective as it is personally unobjectionable．Through such mediums they constitute themselves a＂third house＂to the
We should at the same to able influential，deliberative and esolute street－reform society．Such a body might examine the subject of street franchises from top to bottom－from the highrailwaymen who claim to own the roadways in fee imple，down to the packing－box gentry，auctioneers，huck ters，builders，ash－bozes，etc．，that maintain their＂nine parts of the law＂by immemorial custom on the sidewalks．Wh knows but that the popular and legislative rind might in ime be educated up to the principle that highways and al heir appurtenances are naturally public property and must ultimately be free to all，for their proper purposes and there fore for no other？

Influence of Sound upon Flame

Prof．Tyndall＇s recent experiments upon＂sounding and ensitive flames，＂to which we referred last week，open a very interesting line of inquiry．Every one may have observed hat a slack current of incandescent gas goes up from its out－ let in slow combustion and smoke，with a diminishing diame er and a sluggish，wavy vibration，to a considerable relativ hight，not apparently obstructed by the resistance of the at mosphere．On the other hand，a jet of the same gas under
pressure impinges upon the atmosphere with a velocity which
causes it to be thrown back and shortened vertically and widened horizontally，while its combustion is intensified，its brilliancy hightened，its smoke consumed，and its vibrations grow more violent－that is，become coincidently accelerated and shortened－as the velocity of the $\mathrm{j} \in \mathrm{t}$ is increased by pressure，until they produce a roar．As the velocity further increases，the roar rises in pitch，and the vibrations are so in tensified as to render the flame comparatively fixed and steady．If the jet be confined in a tube or lamp chimney，its velocity relative to the air is increased by the draft of the air through the tube，and the effect is in some respects similar to that of pressure，but its vibration may be so modified as to produce a tense，defined or musical sound．This naturally seems to be the result of embodying the vibration（so to speak） in a fixed and firm medium，the tube，from which it is given in definite and uniform waves to the external atmosphere But the experiments of Prof．Tyndall suggest that the reflec tion of the vibration from the tube to the flame is the essen tial means，operating to re－inforce as well as to steady the primary vibrations to the sounding pitch ：while the length of the inclosure gives them length，as well as a longitudina urrent and impetus（as in the discharge of a shot through ube）to sustain their passage or rather prolongation through the air．The evidence is this－and here is the fact of which Prof．Tyndall＇s curious experiments are phenomena－tha the vibrations of a flame are re－inforced by coincident vib is ons from other sources，as musical instruments and other ono rous objects，receiving an increase of energy which is mani－ stance，a jet in a tube which is not up to the pitch of sonorous energy by itself，may be instantly re－inforced in its vibration either by the right note from any foreign substance or by changing its position in the tube，at once begins to sound th me or a harmonious note，and when thus started will con inue to sound．At the same time，the extension of the flame contracted by the re－inforced vibration，in a similar manne s by increased pressure，and sudden，i．e．short sounds，pro duce the short effect called a start or jump，in the flame．We quote the further effects exhibited in Prof．Tyndall＇s late lecture ：－

街
naed

 gitat ？边

An Athoy which exhibita a golden yellow color，is readily parta iron， 55.33 parts copper，and 41.8 parta zinc

62，526．－Toilet Glass．－Robert H．Brown，Detroit，Mich Antedated Feb．20， 1867
Claim the combination and arrangement ofglass， 3 ，the folding frame， 2 ，
nd tine folding glass， 1, operating as and for the purpose specifed． 62，527．－Metallic Stuffing Box Packing．－Joseph F． First，I claim

62，528．－Twine Cutter．－James Madison Clark，Chester， Conn．

I claim the knife，K，in combination with the tongue， I ，and spring， S ，for the purpose hareinset forth．

62，529．－Wabitna Machive，－C．Covert，Fayette，N．Y．

ISSUED FROM THE U．S．PATENT OFFICE for the week ending march 5， 1867 Reported oflccally．for the Scientific American．
PaTENTS ARE GRaNT
being a achedule of fees：－
偖
iling each application for a Patent，except tor a design appeal to Comisisioner of Patents
application for Reissue．．．．．．．．．．

In addition to which there are some small revenu

 62，517．－Apparatus for Washing Fibrous Substances First，William the use for wash ing thiladelphia，Pa．
 second，The a ajustable pipe，，，arranged for the witherawal or the dirty water trom the trough Deneatil the perforated shield， F ，substantially as de－ scineri， Chira，The trough， B ，with its rollers， P

firfth，The endless band，T ，in combination with the rellers，y
62，518．－Sand Emery and other lige Paper．－William Adamson，Philadelphia，Pa．
I claim sand or emery paper saturated with a solution of gum elastic or
antapercha and naphtha，or otber equivaleni solvent，and for thepurpose
described． 62，519．－Peat Machine．－Edward Atkinson，Brookline， Mass．
1 scrow，consuructed and arranged to operate substantally as and for th
spose
sece torth purpose set torth
second The ，Tielding or expanding outlet or delivery tube，arranged to
operate substantially as and for the purpose set forth． 62，520．－Button－hole Sewing Machine．－W．B．Bartram

 forth．
seventh，The guide plate， C ，in combination with the straining slide．W，W，
and the serrated plates， V V ，substantially as and for the purpose set forth． 62，521．－Composition for Buildino Material．－Sylvester I Bissell，Hartford，Conn．
62，522．－FEED RACK．－John W．Blanchard，Rutland，Wis．
 22，523．－Barber＇s Chair．－－N．W．Bonney（assignor to him－
self and O．Davis），Lewiston，Me
 62，524．－HoRsE RAKE．－William L．Bostwick，Ithaca，N．Y．
 62，525．－Hand－peg ging Machine．－J．Hamilton Brown， I clama，First，Operatins

 the iorce exerted in withdrawing or raising the awl shall aid in bringing the
Leeding foot close to he sole，ane thus by impact make the feed more certain

 hround win tue maschine a bolt or colt ot pe
chine wy dryiny unon the end of the strip or
any pushing device，substantially as described．

