the Offlce has been built p p, and who exclusively sustain it, that the want of sons to come from distant parts of the United States to consult books which can ouly be found here. A careful exa minatlon of the catalogues of other cal librarles in the world, if not the very best. The high price of gold and the limited means of the Office during the war prevented the purchase of many volumes which are mnch needed. Gold has very much depreciated and the means of the Office are now ample, and there are needed many volumes ofnecessary works to complete series heretofore kept ap, which
must soou be puachased or behereafter boughtat a much greater cost, if they ean be procured on any terms, and there is really no room for any additional volumes, if such were now on hand. The works consulted in this library are very many of them of large size and require corresponding space for their
examination. It often happens that every table fn the room now occupied examination. It often happens that every table in the room now occupied by the lilrairv is more than covered with volumes for exame,
too in places which should not be open to the public at large
The want of room for the mere deposit of books is so grea
them are, of necessity, stowed in the halls, in other rooms. and even piled o the floors. This is an every-day inconvenience; add to this the want of room for consulting the volumes as above mentioned, and there will be found a very valuable public institution which is deprived of much of its real
or usefalness for want of proper space for the use of its advantages. r uscfalnes8 for want of proper space for the use of its advantages.
Deeming it to be my duty to call the attention of Congress to the the indispensa ble necessity that exists for much more room in order to prop erly carry on the now great and rapidlssincreasing business or this Office, have, as briefly as I could, made the foregoing representations, in the con fildent hope that your honorable body will, at no very distant day, take All of which is most respectfully sabmitted.
(Signed)
T. C. Thisaker.

Important Astronomical Discovery.

M. Schiaparelli, Director of the Brora Observatory at Milan, has announced the elliptic elements of the orbit of the mete oric shower of last November, in a comparative view with those of the orbits of two late comets-that of 1862 and the first of 1866-pointing out the important coincidence of all their details, to a fraction of a degree in most cases. Thus, the revolution of the comet of 1866 is calculated as 33.18 yeare, corresponding closely to that of the swarm of shooting stars. Comparing with the great comet of 1862, Schiaparelli gives for the orbits of the shower and the comet respectively the following elements, the co-incidence of which will be found very striking:-longitude of perihelion, $343^{\circ} 28^{\prime}$ and $344^{\circ} 41^{\prime}$: longitude of ascending node, $138^{\circ} 16^{\prime}$ and $137^{\circ} 27^{\prime}$ inclination of orbit, $64^{\circ} 3^{\prime}$ and $66^{\circ} 25^{\prime}$: perihelion distance, 0.9643 and 0.9626 : perihelion passage, August 10.75 and 22.9 . Le Verrier (" true to his antecedents," says the Paris correspondent of the Cihemical News) has done M. Schiaparelli's discovery the honor of adopting it as his own, and reproduced it with some elucidation in a lecture at the Academy of Sciences January 21st. He also addressed a public letter on the subject to Sir John Herschel, which with the reply was published in the Moniteur, and all without the least allusion to Schiaparelli, who had published his comparative calculation in the observatory bulletin for Dec. 31st, and a complete mathemati cal theory of the phenomena in Les Mondes of January 25th
M. Le Verrier is quoted to the effect that the tricennia shower is a swarm of asteroids coming toward us from the depths of space, at regular intervals, and returning toward the superior planets. A body coming from a distance, with great velocity at the moment when it attains the minimum distance of the earth from the sun, could not be fixed in an orbit of one or two years by the feeble action of the inferior planets. This truth finds a physical proof in the fact that the shower of falling stars which repasses the earth every thirty three years is not deranged in the configuration of it orbit, but returns at regular intervals. M. LeVerrier also as sumes that the mass of shooting stars could not have been in troduced and thrown into its actual orbit but by some energet ic disturbance ; and remarking that its orbit crosses that of Uranus, concludes that all the phenomena may be explained
by the collision of a globular cluster with Uranus at about by the collision of a globular cluster with Uranus at about
the year 126 of our era. The latter suggestion meets with doubt, and it is remarked as to the period, that passages quoted by M. Schiaparelli in his article, from the ancient In dian poems, seem to show that the Novembermeteoric showe had been observed long before A. D. 126

Now French Telegraphic Machines

One of the latest inventions in use, that of M. Neel, consist of a dial on an axis, lettered with the proper alphabet in a circle, moved by clockwork, and stopped at will by means of the electric current. a single perforation, each letter is brought to aperture a strument is so simple and requires so little practice, that it has been adopted in France for railway and postal purposes A simple form of battery said to be very effective and econom ical, is in use on French telegraphs. It consists of a rod of zinc forming one pole, in a porous vessel which is enclosed by a carbon cylinder covered with crushed carbon and peroxide of manganese, constituting the other pole. Only one liquida solution of chlorhydrats of ammonia in water-is used. The carbon and manganese last a long time and are cheaply renewed. A curious device designed to utilize the whole velocity of the electric current, has been invented by MM. J scription in a Paris letter, the system is about the following The main wire is ramified at each end into eleven short isolat ed small wires. The elemental parts, eleven in number, of al the letters, are cut out from plate metal and ingeniously ar ranged (each in connection with one of the small wires) in a group in which any letter may be seen by suppressing the parts foreign to it. The prepared or conductive paper for sending dispatches is stamped with rows of this composite figure, and the letters of the despatch are formed by tracing the proper elements in each successive figure with insulating ink The machinery at each end of the line (we infer) brings each of the eleven wires into and out of circuit in rapid succession
and invariable order, convering from each part of the traced
character on paper at the sending station to the corresponden ype in the group at the receiving station, a magnetic action or interruption, as such part is traced or untraced with the in sulating ink, and thus automatically printing one letter a each revolution of the series. Another French machine in vented by M. Alphonse Joly, "special agent of the admin istration of telegraphs," prints the despatch at both ends of the line at once, thus verifying, includes among its charac ters the figures and points, and transmits 120 to 180 letter per minute.

Culitortal summary.

The number of vessels reported lost during the year 1860 was 554 , valued at $\$ 13,975,000$

There were $2,407,000$ of the new five cents coined at th Philadelphia mint in December last.

The New World still leads the Old in telegraphy. Americ now has 90,000 miles of telegraph lines; Europe 60,000 India 3,000 .

Flattery is the oil of the machinery of society. All ar usceptible to it ; and he that thinks he is not, flatters him self in the outset.

A Quice Process for getting drying linseed oil is given by Dr. Dullo : boil the raw oil for two hours with binoxide of manganese and hydrochloric acid.
Spain and Brazil have abundance of coal, but import the article at heavy cost from England, for want of enterprise to work their own mines. It is believed that a coal field fringe the coast of Brazil from the river Platte to Cape St. Roque.

Pudding is performed in a number of English iron works, by an automatic machine driven by steam, closely imitating the movements of the puddling tool as worked by hand, and giving, as claimed, an economy of nearly half in the con sumption of coal.

Meteorites-assuming them to be planetary specimensshow by their analysis that peridot, which is found in some of our lowest rocks, is, as Daubree, the investigator of this sub ject, describes it, the universal scoria, and that oxygen is als universal element.

Ligit Submarine Cables.-An English inventor propose to give to telegraphic cables a buoyancy which will provent their parting from strain in paying out, and facilitate raising them, by means of a coating of ground cork mixed with india rubber.
Photographic.-The Paris Gas Company has decided t manufacture alkaline sulpho-cyanides and ospecially the su phocyanide of sodium, on a large scale, at the request of th Photographic Society. The price will be three francs the kil ogramme, and sixty tuns can be produced yearly

A Malleable Cast Iron of great strength, toughness an hardness, is reported to be produced by a secret process by Mc Haffie, Forsyth \& Miller, of Glasgow. It has been used under ipportant contracts for propeller screws, mast tops, haw peen hammered down to the solid boss without cracking.

A Hint for the Patent Office.-A correspondent com lains of the difficulty of finding different models or even classes of models in the Patent Office, and suggests the im provement of having the localities of the several classe marked by conspicuous signs, and the subject. date and rantee of each patent stated in a neat and plain inscription ver the model.
Putting Out a Fire.-During the process of extinguishing the fire in the colliery of Clackmannan, near Stirling, En gland, in 1851, about $8,000,000$ eubic feet of carbonic acid ga were required to fill the mine, and a continuous stream of im pure carbonic acid was kept up night and day for about three weeks. The mine extended over a surface of twenty-six acres, and had been thirty years on fire.
The Silik Collodion newly invented, has long been ob ained, or something like it, by the Chinese, from the con ents of the silk worm which has been prevented from spin ning. The matter is found in a thickened mass or gum, and is made into a transparent varnish. It is also spun (as the gum is said to have been spun lately by a Frenchman in a still earlier stage of its formation in the mulberry tree) and forms a very strong thread, used for fishing lines and snells.

Improvement in Watches.-An English manufacturer ha ements by which th full-sized balance wheel of the English whole-plate watch is arried in the thin flat case so much preferred for convenience but hitherto excluding the perfection of structure and dura bility. A Mr. Barlow has patented a simple contrivance by which the only figures of the dial that appear are those of the urrent hour and minute. A perforated screen is made to re volve instead of hands over the dial.

Patents and Prosperity.-The Scientific Revievo(London) commenting on the remarkable exhibit of our Patent Office makes a suggestion to the effect that the relative commercia prosperity of different countries seems to bear an intimate relation to the encouragement and activity of invention, as indicated by the spirit of their patent laws and the number of patents granted. Witness England, France and America,

China and Japan, wedded to the ways of a younger and cruder age, as if the man should look back to boyhond for his model, and glory still to think, to spealk, to act as a child,
Sound and Color Vibrations.-It is calculated that the deepest note which the human ear perceives as a continuous sound, is produced by 16 vibrations in a second : the acutes by 48,000 . The extremes of color are red and violet ; the for mer given by 458 billions of vibrations per second, and the latter by 727 billions. The relative velocities of light and sound, and the relative refinement of the media through which their effects are conveyed, are illustrated by this coin parison.

Mountain attraction.-The pendulum experiments con nected with the great trigonometrical survey in India, have shown that, contrary to previous theory, gravitation is les powerful as we approach the Himalaya mountains ; corrobora ing the Astronomer Royal's opinion that the strata below the mountains are less dense than those beneath the depressed portions of the surface. Nothing could be more probable han that the upheaved portions of the crust should be the weakest.
The Pontoon Rallroad Bridge over the Rhine, or that part which rests on pontoons, is 768 feet long. The connect ng ends of the shore approaches are adjusted to the rise and all of the pontoons by a screw gear. The pontoons are coupled in sets of two or three, and each set can be readily removed or the passage of vessels and replaced. They are $65 \frac{1}{2}$ feet ong, and austain a roadway of about 40 feet in width, the central portion occupied by the rails, and the space on oach ide devoted to ordinary traffic. It has been in use about wenty months. The sinking of each pontoon under the loco motive is said to be only one-third of an inch.

Electricity and Altitude - M. Matteucci has found that if the surface of the earth at different altitudes be conneoted by a conductor, a constant current of electricity will flow from the lower to the higher point ; the intensity of the current in creasing with the difference of the altitudes. Thus, between lorence and Turin, the deflection of the galvanometer from the current passing through it was from 15 to 20 degrees; be ween Pontedera and Volterra. from 20 to 25 ; and betwee Aoste and Courmayeur, from 40 to 50 . Atmospheric changes however, modify of course the effects, as do also diversities of atitude and geological formation. The aurora borealis and he variations of terrestrial magnetism are supposed to have an intimate relation with this distribution of electrical condi. tions.
d Monster Saw.-At No. 2 Jacob street, this city, we aw, a few days ago, a circular saw intended for the Paris Exhibition, which is said to be the largestever manufactured, t is 88 inches, or eight feet four inches, in diameter, of one solid plate, from the works of Messrs. W. Jessop \& Sons, England, and weighed, before flnishing, 590 pounds. The 6 ar is one of Emerson's patent, having movable teeth which are secured in the plate by V-shaped grooves with correspondng tenons and one rivet to each tooth. The thickness of he finished saw at the center is No. 2, Stubbs' wire gage, and t the edge, No. 5. The saw was made by the American Saw Company at their works at Trenton, N. J. It will be a prominent feature of American industry at the Paris Exposition.

A Valuable Fire Escape has been in troduced in England in a form convenient for travelers, and as safe and easy to use as a flight ef stairs. Within a thin metallic case only $7 \frac{1}{2}$ inches in diameter, are coiled on a pulley thirty feet of light, trong and flexible stcel-wire rope or tape, passing out beween rollers adjusted by a hand screw to any desired pressure, and terminating in a hook for fastening to a window seat. A chair for the body, formed of leather straps, is attached to the case, and the hook being secured to the window seat, the person seated in the chair may regulate or arrest at pleasure his own descent, by means of the screw. By using fine steel wire, woven into a tape, sixty feet might be coiled in a smaller case than that above described, making a perfect fire escape portable in every one's carpet bag.

Domestic Economists may try the suggestion of covering he bottom of a fire grate with a plate of boiler iron or tho like. Dr. Samuel Warren (author of "Tea 'Thousand a Year," and now recorder of Hull) asserts from experience that by this means one third of the coal may be saved with an increase of warmth. The iron plate evidently acts as a reservoir and radiator of the heat in the downward direction where it is most useful, and strengthens the combustion above it. Tho layer oí ashes which usually receives the downward heat, ab. sorbs it with avidity and scarcely radiates it perceptibly : as is proved by the fact that a grate is quickly burned out by an ac cumulation of ashes under and in contact with it, which with out contact would be quite harmless. The capacity of ashes for "keeping" fire (i.e. heat) also proves that it should never be avoidably left in a position to absorb the heat, where active radiation is wanted. A fire clogged with ashes gives out, for this reason, palpably less warming effect than a clean fire, for he same amount of fuel. If the plated grate above suggested be not kept clear of ashes, the heat in the ashes will be largely withdrawn into the plate by contact, and thus utilized; but the plate or grate, whichever is uppermost, will be rapidly burnt out. The best economy of both heat and apparatus, is to keep the plated grate clear, and probably a further saving would be effected by allowing the hot ashes to be distributed upon a lower plate freely exposed to the atmosphere of the room and frequently cleared:

Improved Lever Farm Gate.
The gate seen in two positions in the engravings is one which when closed forms a portion of the fence as rigid and secure as the fixed fence itself. When opened it is entirely out of the way, so that the space occupied by the gate is left
free. It is a pivot gate, the horizontal and upright bars being free. It is a pivot gate, the horizontal and upright bars being
so pivoted at their intersection that by the action of a lever the gate may be folded together and dropped into a channel prepared for it.
A properly braced frame, A, supports two levers, B, one on each side of the gate, which engage at their inner ends with two upright bars pivoted at the lower ends with the gate post. Connected with these upright bars and turning on suitable pivots with them, is a horizontal box, C, weighted with stone to counterbalance the gate. Opposite the gate frame is an upright to hold the gate in position when closed. A horithe gate in position when closed. A
zontal bar on the main frame, acting as a latch, is operated by the levers to unfasten latch, is operated by the levers ounfasten the gate, and when the gate is closed falls
by its own weight into position and holds by its own weight into position and holds
the gate securely. There are no posts or parts below the surface of the ground to be rotted off; no pit to give space for the action of weights, and to be filled up with ice in winter. All its parts are above ground, the gate when closed occupying a space no deeper than sufficient to hold the horizontal bars of the gate when they are folded together. The driver of a vehicle, or the equestrian, may, without alighting or relinquishing the reins or bridle, open and close the gate by the pendent rod at the end of the levers. If the channel should become filled with snow or ice, the gate can be easily removed by withdrawing a pin near the bottom and the channel be left clear to be cleaned. The attachments for working the gate appear to be of the simplest construc-
tion, not liable to become disarranged, and tion, not liable to become disarranged, and built for durability.
This gate was patented Jan. 29, 1867, through the Scientific American Patent Agency, by George McKnight,
formation.

MANUFACTURE OF FOREIGN BEER

English men, women, and children, commencing with the new-born babe whoimbibes it in its mother's milk, drink on an average a barrel of beer each per annum, during life. They did so a hundred and fifty years ago when there were but six millions of them, and they do it now when they are twenty millions. Consequently the brewers of England have the task of producing annually among them $20,000,000$ barrels of beer for home consumption, beside the immense export. of beer for home consumption, besid
It is therefore no wonder, or rather only the same wonder over again that each of the twelve great breweries in London, among which it is difficult to say which is the greatest, cupies many acres of ground employ men by hundreds and horses by hun men by hundreds and horses by hun by the hundred thousand barred But by the hundred thousand barrels. But which is devoted to a large section of which is devoted to brewing, and presents to a bird's eye view the appear ance of one vast brewery, space and facilities for the manufacture are more abundant than in London. The prem ises of one brewing firm (Bass, Rat cliffe, Grattan \& Co.), cover 48 acres eight of which are sometimes covered with beer three casks deep, worth some two and a half millions of dol lars, waiting to be distributed to their customers and agencies, Their sale customers apd agencies. Their sales quarter millions of dollars ($\$ 6,125,015$): their mat to Goverme their malt tax to Government, $\$ 885$, 731 ; their workmen, 1,555 , and clerks,
163. They reap (indirectly) 30,000

MCKNIGHT'S LEVER FARM GATE.
-another household word all over the world-the larger storing vats contain 5,000 barrels each. Their stables contain 120 horses weighing from 1,700 to 1,900 pounds each. The malt houses are situated in the country ; yet the city establishment covers twelve crowded acres. They bring up their sons to the business-five of them at present-by an apprenticeship of four years, during which they live on the premises in a build ing erected specially for them, rise at four o'clock in the morning or earlier as circumstances require, and upon occasion take the places of any of the clerks who may be sick or on
leave, so as to become familiarized with every detail. Everyappropriated with rigorous system.
A peculiarity of the London beer business is that the brew ers to a large extent own or control the alehouses, and the retailers are their tenants, dealing only in the article manufactured by them or in non-competing articles. A large sign displays the brand-" Barclay, Perkins \& Co.'s Entire," for example. The price per barrel is about $\$ 733$ for ordinary porter, andfor ale $\$ 778$. The retail price is $1 \frac{1}{2} \mathrm{~d}$. (say $2 \frac{2}{4}$ cents) per glass, a full half pint, or 4 d . ($7 \frac{4}{10}$ cents) per quart.
The taxes are laid on the malt, except a trifling license duty of three pence a barrel on beer, substituted in 1862 fo

The average Englishman, drinking as we said his average barrel of beer per annum from birth to death, drinks less than three quarts (645 gallon) of spirits per annum. In Ireland and Scotland, the principle though not the exact proportion is eversed: owing, some suppose, to a heavy excise imposed upon Scotland by the English in 1707, which suppressed the consumption of beer and brought whiskey into its room. In Ireland, the manufacture of porter was introduced only at the dawn of the present century. Consequently the brewing in terest is insignificant in those parts of the United Kingdom, comparatively, and yet it is not so to our conception of things. For instance, the celebrated porter brewer of Guinness, Son \& Co., Dublin, which has given a leading brand to the cosmopolitan market, is reckoned by the proprietors to rank about the fourth in extent of production in Great Britain. The wealth as well as the liberality of the concern may be inferred from the fact that its senior gave at one time 9726,000 for the renovation and enlargemen of the Protestant Episcopal Cathedral in Dub lin. The still larger gift of his son, Rev. Henry Grattan Guinness, who gave himself as a gratuitous evangelist throughout the Englishspeaking world, is fresh in the memory of every one in this country.
In Scotland, the brewers are famed for superior quality of ale, of great gravity and strength. "Scotch Ale" is a department o the trade in both hemispheres. The Scotch brewers are also successfully meeting the in creasing demand for a lighter ale, competing in their own market and to some extent even in the English, with the famous brewerie of Burton-on-Trent. Yet the whole production of malt liquor in Scotland and Ireland togeth. er is but one tenth of that of the United King dom. That of London is about one sixth of the whole.
In regard to peculiarities of manufacture, a ew items may be added. The prejudice against American hops is rapidly disappearing portion of them are now used in nearly al the large breweries. The superiority of British beer is due in great part to the extreme care taken by the brewers in the selection of their barley and the manufacture of malt. They pass it through screens and fans, separating the lighter grain as food for cattle and using only the best grain for mal as food for cand using only the best gran for malt ample time is given the barley on the floors, to germinate, and the drying is very careful and perfect. It passes over a screen when thrown from the kilns, and the separation of the
rootlets is thus more thoroughly effected while warm and rootlets is thus more thoroughly effected while warm and
crisp than afterward. Immediately after this, it is placed in bins and covered four inches deep with the rootlets to protect it from moisture. The malt floors are tiled with what are

The heavy Scotch ale is manufac tured, in some breweries at least, only in fall, winter and spring, when it can be fermented at a low temperature The famed clearness of the Burton ale is attributed to the calcareou composition of the water used. The manufacture of porter and ale, in Barclay, Perkins \& Co.'s establish ment, are as distinct processes as if there were two distinct breweries The mash tuns are commonly of iron but in Allsopp's new establishment the receptacles and utensils for mash ing, fermenting and finishing their beer are of wood; and at another celebrated brewery, that of Truman Hanbury, Buxton \& Co., many of these vessels are beginning to be made of slate, which gives high satisfaction on account of its cleanliness and dura bility.
The above data are mainly derived from the report of the Commission of the American Brewers, sent over in 1865 to obtain accurate information of the excise laws of Europe relaacres of land yearly of its crop of barley, yielding $1,280,000 \mid$ bushel yielding half an English barrel (about 22 American galbushels of malt. They consume 130 tuns of coal per day, and lons) of beer, making the whole duty equivalent to 94 cents on $8,000,000$ cubic feet of gas per annum. And their business is extending at the rate of 200,000 bushels of malt per annum.
The operations of another firm at this place (Samuel Allsopp Sons) are scarcely less extensive. Both the names mentioned will be recognized as leading and celebrated brands the world over. The brewery of Allsopp \& Sons is said to be probably the most perfect and complete establishment ever erected. Their premises cover fifty-two acres. Their count ing house is a hundred and twenty feet square, subdivided by glass partitions, and handsomely furnished, with every department thoroughly systemized, including even a postoffice, and a department of chemists, whose duty it is to subject the beer to known tests at every stage of manufacture in order to secure its ultimate perfection. Duplicates of every utensil employed in the manufacture are kept on hand, so that no time may be lost by accidents. Every one of their 400,000 casks(which they make for themselves) has its number and its account kept, so that its present whereabouts and past history can be told in a moment.
In the establishment of Barclay, Perkins \& Co., in London,
an American barrel ; which rate it has not exceeded for the last 44 years, except in 1854 and 1855. Nearly one-tenth the expenditure of the British Government is paid by beer; but a much larger proportion is borne by (British) spirits. Together, the liquors pay nearly one-fourth the whole cost of the general government.
It is a noticeable fact in the experience of British taxation that while no increase that has ever been made in the rate of taxation on spirits has, in the long run if at all, reduced the consumption, the taxation of malt liquors has been sufficient at some points to diminish the demand very seriously. This result illustrates very strongly a fact by which it is undoubtedly explained : i. e., that no such unconquerable passion is exciteù for beer as forardent spirits, and hence the former will be dispensed with when it becomes too expensive, while no sacrifice is too great for the devotee of ardent spirits to make to his idol. Congress should bear these plain facts in mind, made practicable to collect
It is said that almost every householder in good circum tances keeps a barrel of malt liquor on draft in his cellar.
tive to malt liquors, to be presented to the United States Internal Revenue Commission.
German Beer.-Beer, as we have seen, is a great thing in Britain, but in the Saxon mother country (or as we American should call it, grandfather land), it is a sort of all-in-all. Its consumption is largely increasing in all the German and kindred countries, notwithstanding the competition of the cheap indigenous wines. In Bavaria, famous for beer, the incredible statement is made by the Brewers' Commission that the consumption is a hundred-fold greater than it was twenty years ago. We are tempted to assume that they meant to say a hundred percentinstead of a hundred fold. Up to 1811 the business of brewing was an aristocratic privilege, confined to the nobility and clergy-the latter being allowed to brew for their own use. In 1785 this monopoly had been relaxed so far as to allow the people to brew for their own use, but not to sell beer. Now, the government puts forth its power to protect and stimulate the manufacture, and provides the people with beer almost untaxed, and even at cost, with its own royal hands. A rise in beer is dangerous, like a rise in bread in Paris of old. A riot resulted in 1847 from an ad vance of $1 \frac{8}{4}$ cents per quart on account of a partial failure in the barley harvest. The King's Brewery, at Munich, under

