the surface. Thus, a pound of iron extended so as to have double the surface will be rusted in half the time, with one hundredth the surface in one-hundredth the time. Suppose the pound of iron to be originally in the form of a ball and that we divide it successively into balls smaller and smaller. The surfaces of balls are to each other as the squares of their diameters, while their weights are as the cubes of their diameters, and the ratio of the surfaces to the weights is constantly increasing as the division goes on. It is evident that by so dividing and increasing the surface a point might be reached where the heat would be generated by oridation more rapiely than it could leak away, and that thus the ignition temperature would be reached, when combastion would ensue.
This is no speculation. I can prove the facts by actual experiments, dividing the iron and exhibiting it taking fire, with far less labor than I have put on this article. Prussian blue is a compound of iron, nitrogen, and carbon. If it be heated to a bright red heat in a tube or crucible from which the air is excluded, till fumes cease to be evolved, the iron is left finely divided. When the apparatus is cool the iron may be taken out and on exposure to the air it will immediately take fire. Ordinary lead is not easily set on fire. But get it in fine powder!, Fill a small vial with tartrate of lead, fit in a clay stopper, set the vial in a sand crucible, imbedding the vial in sand, and subject the whole to a low red heat for half an hour. The vial now contains lead powder, the partieles of which are prevented melting together by other fine particles of carbon. This lead powder takes fire as soon as it is brought into the atmosphere. Dissolve phosphorus in bi-sulphide of carbon, and dip a piece of cloth or paper in the solution and expose it to the air. Instantly as the solvent has evaporated, the phosphorus (now left finely divided) takes fire. I might describe hundreds of similar experimental illustrations, but I hasten to the cases of spontaneous combustion which occur in the ordinary routine of life.
Ninety-nine hundredths of these cases originate from the oxidation of linseed oil. This oil in a paint pot has little surface exposed compared with its whole mass, and the heat generated is diluted over the whole body of the oil, radiates into the air, etc. When the paint is spread on wood, the oil oxidizes rapidly and heat is correspondingly produced but being in contact with the conducting wood it is carried away. But if the wood were a non-conductor and no heat were
radiated the oil would speedily take fire. When the oil is radiated the oil would speedily take fire. When the oil is
mixed with sawdust or spread on cotton wool, paper, or clothmixed with sawdust or spread on cotton wool, paper, or cloth
ing, and the mass is kept away from strong currents of air, ing, and the mass is kept away from strong currents of his greasy overalls in a bundle, throws them in a corner or on a shelf and the house is set on fire: dozens of cases like this have occurred in this city. Linseed oil is so remarkable in this way that I think it might sometimes be made available for kindling a fire where matches and other conveniences are not at hand.
The spontaneous combustion of nitro-glycerin, gun cotton and pyrotechnic compounds may be brought within the category of oxidation. But in all these cases the oxygen is not supplied from the air. It is part of the substance itself, and is gradually eliminated to the part which is combustible. A complete explanation of these cases would extend this article beyond reasonable limits.

Cerrespmafuce.

The Edittors are
spondents.

The Menhaden Oil Mania

Messrs. Editors:-The time was once when those engaged n the manufacture of Menhaden oil were looked upon with disgust by those who considered themselves the " Upper Ten" of society. But now how great the change! Whether the exalted have become abased, or the abased exalted, deponent saith not, but certain it is that it has taken the form of a mania second only to the petroleum excitement. This business, which about fifteen years ago was in its infancy, to our vicinity but is spreading north and south with astonishing rapidity, and the finny tribes are disturbed in their most secret haunts. While fifteen years ago there was but one factory in this vicinity, today there are perhaps twenty or more, and nearly all of them prospering, as we should think by the extensive preparations being made for the coming season. A novel plan has originated here, to follow the fish with the change of season. Two large steamers have been fitted with necessary apparatus for extracting the oil, and have cruised the past season from Maine to Virginia in search of the "miniature whale." This plan is attended with extra expense and difficulty and we think has hardly been profitable so far, but with proper care and more experience may yet be made reperseverance, and meits success. About three years since, company from this place started a factory in the state of Maine. Since that time other companies hearing "fairy that vicinity, and now they are nearly as numerous as here that vicinity, and now they are nearly as numerous as here.
We certainly wish them all success, but fear that the large We certainly wish them all success, but fear that the large all. But in this we may be mistaken. The oil as now made is used largely for outside painting and is considered by many superior to linseed. Forming a smooth glossy coat on the
surface of the wood, and being sold at a much lower price surface of the wood, and being sold at a much lower price
than linseed, it is getting into general use. It is also used by rope-makers and curriers of leather, as it is much cheaper than other oils and answers their purpose as well. The refuse of the fish is considered an excellent fertilizer, and is
used in large quantities on the Island, and also in Connecticut and Massachusetts. It is also an important component in the manufacture of phosphates, containing a large amount of ammonia, which is necessary to certain crops. But perhap we have written enough on this subject, our object in writing this article being to enlighten your readers concerning a business of which comparatively little is known.
Greenport, L. I., Jan. 29, 1867

Elongated Shot and Shell.

Messrs. Editors:-Capt. Norton, I observe by your paper of the 2nd inst., has furnished you with evidence relating to his claims of priority. The article states that one Richard Airey, Quarter-master General, had seen Capt. Norton's elongated expanding shot and shell, identical in principl with the present Minie bullet, at Woolwich, England, in 1823. The statement does not furnish us with the information required. If Captain Norton claims to be the first to propose the use of elongated projectiles, I refer him to Joe Hunter's French patent dated 1790, wherein he fully describes his com pound shot and sabot for rifle guns. A drawing of Hunter's sabot in my possession represents it as formed on a conical based shot like "Sawyers." Dr. Reed's patent is dated 1756
and consists of the application of expanding sabots to elongated projectiles, but he casts the projectile on the sabot. In practice it is found to be very destructive to guns and projectiles, and it is now abandoned.
Major, now Major General, Dyer, in the spring of 1859, pro posed to the Ordnance Department the application of expandposed to the Ordnance Department the application of expand-
ing soft metal sabots to the base of projectiles, being the converse of Dr. Reed's patent
Mr. Thomas Taylor, of Washington Arsenal, claims to be the first to render the Dyer system practical. The advantages of Mr Taylor's improvement are of much importance Shot and shell may now be fired over the heads of troops without danger, as the sabot never strips. Brig.-Gen. John Gibbons says-page 120, Artillerist's Manual, 1863-" the importance of applying the rifie principle to guns of large calibre is too evident to need explanation, and many and various have been the attempts made to succeed in it, but up to the present without any degree of certainty, altheugh much progress has been made. The importance of the question is mueh enhanced by the fact that the moment a successfu plan is discovered, the great problem of concussion and per discovered, there can be but little doubt. Large projectiles, discovered, there can be but little doubt. Large projectiles,
being made of iron, cannot of course be forced into the grooves of the gun like the leaden ball of small arms."
"Attempts have been made to cast on the outside of the cylindrical part of the shot some softer metal such as lead or composition to take the groove and give the necessary rota tion, but it has invariably been found that although these metals take the groove at first they are immediately torn to pieces and off the iron part of the shot by the force of the powder. The increase of the force in powder cannot be cal culated upon like any other motive power, and because a leaden projection of .01 of an inch will hold in its position a common rifle ball of 2 oz . in weight when acted on by 60 grains of powder, it does not follow that the same effect will be produced when these elements are increased a huncred times-much less when they are increased one thousand times in a great many inventions of the day.'
Mr Taylor's improvement consists in the application of a soft, tough and yielding alloy, and in so constructing the sabot that a portion of the gases is employed to compress the body of the sabot upon the base of the projectile, while another portion is employed to expand the sabot into the grooves of the gun, causing the shot to rotate and ensuring great accuracy of fight. One of the Smith Family. Washington, D. C.

Artesian Wells.

Mrssrs. Editors:-In your issue of January 26th, in an article on "Artesian Wells," D. C. says, "Beneath the blue limestone there exists a heavy formation of sandstone, very eompact in its structure, and not likely to have any reliable water-bearing strata. It is known in the New York Survey as the Potsdam sandstone. This formation rests on the primary rocks, and artesian wells cannot be expected in primary rocks, and artesian
rocks of that age and depth."
I am happy to inform D. C. that his theory is not alto gether correct, as a glance at the geological survey of our State will show you that we are in Ogdensburgh on the limestone formation and not a little above the Potsdam sandstone, yet
we have two artesian wells, one at Arnold \& Co.'s Brewery we have two artesian wells, one at Arnold \& Co.'s Brewery
that has been fiowing for six or eight years and is nearly one hundred feet deep. The other is at the Ogdensburg gas works This latter well is about one hundred and one feet deep, and discharges a stream of about one inch in diameter, with a capacity of fifteen to seventeen galls. per minute, of the purest soft water imaginable. Some of our leading citizens will probably sink another this spring to the depth of three hundred or four hundred feet, perhaps more, on an eminence Sg.
Ogdensburgh, New York, February $9,1866$.

Bridging the East River

Dear Scientific:-You are growing more portly and more handsome as you grow older. You are a pearl of great
price-a perfect mine of wealth. I hailed you when a " little shaver" many years ago. With increasing admiration I hai you now. Long may you wave for the benefit of the great
engineering and industrial interests of our glorious land. Our country abounds in periodicals, but we have only one Scientific American.
Among the very many engineering enterprises discussed
n your columns I have been much interested in the Broad ay problem, which, it appears to me, is drawing to a prac rcal solution in the grand project illustrated and described in I recent number of the current volume.
I see also that the bridging of the East River is looming up and various suggestions being elicited. In this line we have a most splendid achievement in the bridge thrown across our beautiful river between this city and the city of Coving ton, on the Kentucky side. It is a magnificent structure and commands the admiration of all that can appreciate the won ders of science.
In regard to bridging the East River it occurs to me that if we keep up with the spirit of the age and make proper use of the achievements of science, the proposition is not as chimerical as many might suppose. We are starting into a new era when steel will displace the great feature of this age and crowd iron out of ten thousand places in which for years we have held it to be supreme. I have not time nor data at hand to do so, but I trust some engineer will think sufficient of the suggestion to make a calculation of the difference in favor of steel over iron; estimating to drive iron completely out of place where strength and lightness of material may be required.
Another suggestion. I would propose a bridge exclusively or foot passengers as a preliminary experiment toward the final solution of the grand project.
J. A. C. Cincinnati,Ohio. Feb.11, 1867.

compasses on Board Iron Ships.

Messrs. Editors :-Your correspondent H., who wrote on this subject, page 122, appears not to understand the difficul ty in question; he seems to think that the compasses are spoiled in the course of time by the effect of the iron in the ship, and says that fresh needles would always indicate the magnetic meridian. This is not so, but the iron of the ship itself is influenced by the magnetism of the earth is magnetized to a certain weak degree, strong enough however, to reach every compass on board, old or new. The magnetic meridian on board an iron ship, and even on board a wooden vessel by the infuence of the iron used in its construction, is not the true magnetic meridian of the earth, and every compass will of course stand in the magnetic meridian as it is on board the vessel. Many years ago (some 40 or 50, if I am not mistaken) an attempt was made by Barlow, in England, to neutralize this magnetism of the ship's iron, by a contrivance called Barlow's correction plate : it consisted of an iron plate or steel magnet, placed in such a position, after repeated trials, in relation to ship and compass, that it counteracted the in fiuence of the ship's iron ; this however was only partially suc cessful, as the magnetism of the iron is not the same in all portions of the ship, but shifts, by the induction of the earth's magnetism, when turning the ship around. The last correc tion is by Ritchie in Boston, lately patented, and appearing successful ; he places his needle, fioating on a liquid, above the vessel, finding a place where the infiuence of the different iron parts of the vessel neutralize each other. It has some times happened that a wooden ship was struck by light ning, and all the iron on board became so strongly magnetized that the compass needle pointed always to the same part of the ship, in place of standing in the earth's magnetic meridian The only disturbance the compass needle itself is subjected to, is either to lose its magnetism altogether, or to have its poles reversed, the north pole pointing south, and vice versa but any compass needle of elongated form will always stand in the magnetic meridian, as it is at the place where the com pass is situated, which meridian will often not correspond with the earth's magnetic meridian, in the same way as the earth's magnetic meridian in very few places corresponds with the astronomical meridian.

Philadelphia, Feb. 15, 1867.
P. H. Vanderweyde M. D

An Inventor at the North Pole.

Messrs. Editors:-It may not be uninteresting to you, and your many thousand readers, to hear a few facts in regard to one of our countrymen, showing what perseverance and energy can accomplish.
In the winter of 1849-50, the writer of this was a residen of Cincinnati, Ohio. I chanced to make the acquaintance of a young man who was engaged in the business of casting brands for stamp tools, by a peculiar process of his own, using type for patterns. Forwant of better occupation, I engaged to take orders for him; his wife was making wooden dolls Time passed, he engaged in the steel press engraving, and built up a good business. Onward, was his motto. Next I find him printing and publishing the "Penny Press" of Cincin nati, using the first (I think) hot-air engine used in the West In all this time he had been reading all the works on Arctic exploration that were to be had, and he then conceived th gigantic scheme of another trip to the Polar seas, and throug the aid of Mr. Grinnell, of your city, he was enaoled to car y it out, and to-day is ice-bound amid the regions of an Acrtic winter. And that man is Charles F. Hali. The man wh seventeen years ago was molding his little types in Mile Greenwood's foundery is now known throurhout the world Comment is unnecessary.
o. V. Flora

Madison, Ind.

The French Fire Alarm.

Messrs. Editors :-The French fire alarm mentioned in the ssue of Feb. 9th as having been invented by Robert Houdin, is not, new, as the undersigned while engaged in the manufacture of Telegraphic Instruments in Boston in the year 1858 1859, made a number of these instruments for the Hon. William Whiting, (late Solicitor to the War Department,) for use at his residence in Roxbury, and operated in connection with at his residence in Roxbury, and operated in connection wit

March $9,1867$.
described as the invention of Houdin. The name of the in strument as given by Mr. Whiting was an Electro-Magnetic Thermostat, and was first invented and put into practical use by that gentleman. Justin Hinds,

Salem, Mass , Jan. 31, 1867.
Supt. Salem Machine Co.

 Under thus headang we shall pubulushnent home and foreiion patents.
Ditching Plows.-John T. Miller, Iowa Falls, Iowa.-This invention con. cutting trenches in wet land forming by one application of the draft for powerful team, a ditch about two feet deep, thirty inches wide at top and twelve inches wide at bottom, while the sod and earth removed from the
ditch, are laid up in a ridge or embankment on both sides by the wings of the ditch, are laid up in a ridge or embankment on both sides by the wings of the
plow. The whole construction is strong, simple and cheap, and especially plow. The whole construction is strong, simple and chea
adapted to the use of the farmers on the Western prairies.
apple Parer, Corer, and Cutter.-W. A. Coe, Greensboro, N. C.-This invention relates to a machine by which apples may be guickl
and cut into pieces without removing the apple from the fork.
Subsoil Attachment for Plows.-R. J. Wheatly, St. Johns, Ill.-The object of this invention is to obtain a simple and efficient attachment for plows
which will pulverize, loosen, or lighten up the soil at the bottom of a furrow made by the plow, and still not increase the draft of the plow to such a degree as to prevent a team from operating or drawing it with facility,
tachment is set to penetrate into the earth at its greatest
Corn Planter.-W. J. Hobson, Savannah, Mo.-This invention relates to corn planter of that class which is designed for planting the corn or seed in check rows. It consists in a novel and improved seed-dropping mechanism,
the arranging and operating of the same, whereby the machine may be used on rough or uneven ground and the seed dropped or planted in check rows without the previous furrowing of the ground.
Cotron Scraprr.-Turner Saunders, Memphis, Tenn.-This invention con-
sists in attaching a scraper to a plow in such a manner that the cotton plants may be plowed or bared off, and scraped at one operation. Hitherto the cotton has been plowed or bared off with an ordinary turning plow, and a scraper
atterward used, the latter implement being rather difficult to manage and atterward used, the latter implement being rather difficult to manage and
not permitting the earth to be scraped evenly from the plants. This improvement admits of the two operations specifled being performed simultaneously and with the greatest facility, thereby effiecting a great saving in labor and

Construction of Plows.-W. D. Long. Wheatland, Pa.-The object of this invention is to produce a single plate of steel or iron rolled or formed in
such a manner that the plow when finished will be thicker at these parts such a manner that the plow when finished will be thicker at these parts
where it s subjected to the most wear, and the plow be capable of being con. where it is subjected to the most w
structed at a very moderate cost.
Extracting Stumps, Raibing Stones, eto.-J. M. Gleichman, Evansville, Ind. -This invention relates to a machine for extracting stumps, raising,
heavy stones, logs, etc, and conveying or transporting the same to any de. sired place, and consists in the employment of one or more levers arranged in connection with a tackle and wind' ass, and a frame mounted on wheels,
whereby stumps may be extracted with the greatest facility, heavy stones and whereby stumps may be extracted with the greatest facility, heavy stones and
logs raised and transplanted or conveyed from place to place, with but a and labor.

Bushing for barrels.-David F. Fetter, New York City.-The bushing forms a lining for the bung hole or other holes in casks or vats; it is designed to save the wear and tear of the staves, and is secured by means of barbed
creases on the outer periphery of the bush, which catch upon the wood and prevent its removal; the extended plate surrounding the bush may be fastened byrivets or screws to thestaves if desired.
Grain Ventilating and Drying apparatus.--James E. Strode, Litch grain stowed away in bulk, and it consists in having one or more air ducts passing through the bin, box, or granary, in which the grain is placed, sai suct or ducts being compesed of slats arranged one above the other with admission of air into the duct or ducts, whereby the grain will be thoroughly

Metallic Hubs forthe Wheels of Vehiclis.-James B. Stuart, Bunker Hinl, Ill.--This invention relates to an improvement in metallic hubs fo the wheels of vehicles, and it consists in a novel manner of securing th
spokes in the hub, whereby the spokes are firmly retained in position an rendered capable of being readily detached and replaced by new ones when ever required
Rakingand Loading Hay.--M. S. Rowson, Winhall, Vt.-This invention
relates to a machine forloading hay on wagons, while the latter are drawn relates to a machine for loading hay on wagons, while the latter are drawn
over the field. The invention consists of a series of rakes attached to endles chains and used in connection with a guide box, a rake and grating or shield, all so constructed and arranged that the hay may be raked up from win
and elevated upon the wagon or cart to which the device is attached.
Sewing Machine.--E. H. Craige, Brooklyn, N. Y.-This invention conor more parts, one or more of which are movable, so that by taking off sai movable part or parts, free access can be had to the feeder and all the parts t
be oiled, which in ordinary Wheeler \& Wilsonmachines can only be reached by uncovering the cloth plate. That part of the cloth plate which is situate by uncovering the cloth plate. That part of the cloth plate which is situated
under the needle consists of a tapering piece inserted in the direction in
which the fabric is fed and held in place by the movaole part of the cloth plate in such a manner that said edge shaped piece can be readily remove and replaced by another piece if it should be desirable or necessary
Pruning Shears.-Daniel Campbell, Elizabeth, N. J.-This invention re-
lates to an improvement in pruning shears by means of which a drawing cut is obtained, instead of that obtained by the ordinary shears, whichis a grea improvement, as the drawing eut, whereby one blade is gradualy draw
obliquely toward the cutting edge of another stationary blade, insures better operation and a cleaner cut.
Boring Machine.-O.o.Crawford, Seneca, Wis.-This invention consists in constructing a machine so that the fellies of carriaa
rapidly and in the most perfect and unerring manner
Crurn.-D. O. Blair, Abingdon, Ill.-This invention relates to a churn of
that class in which the dasher is attached to a vertical shaft and receive eciprocating rotary motion by certain devices arranged abo ve the cover o he churn, and the improvement consists in the construction of those parts
by which the dasher shaft is revolved, by which the churn is operated in an easy and efficient manner, and which parts are furthermore so arranged in a slower or faster motion can be imparted to the dasher shaft without chang ing in the least the motion of the lever by which the whole is operated. Mop Hzad.-Joseph Messingerłand H. H. Mason, Springfield, Vt.-This in.
vention relates to a new and improved mop head of that class in which a crew and a ratchet and pawl are enployed for opating the jaws and r aining the same in position to hold a mop cloth
Sowing elce and other Seeds.-Joseph A, Reynolds, Savannah, Ga.This invention relates to a machine for sowing rice and other seeds which
are grown in small drills. The invention consists in the novel means emare grown in smalldrilis. The invention consists in the novel means em-
ployed for distributing the seec ind in an improved arrangement of farrow ployed for wistributing the seec end in an improvel arrangement of
Pire Tonas and Cutter.-John Balmore, New Ẏork City.-This invention
relates to a tool wh ch can be used with great advantage for screwing up and for unscrewing pipes of any description and also for cutting said pipes. It is
provided with a swivel hook that catches over the pipe and is hung on udgeons projecting from the ends of a nut 1 nto which the shank of the tool
and

Stintific Antrucaut
bears agatnst the pipe to be screved or wigcewwed. A hole horod in the
center of the cup-shanged point serves to roceive the cutter the which drops into a greove in the inner surface of the hook so that its cutting edge can be set up against the pine to be cut without turning the cutter.
PropplLwa Vessgis.-Samuel B. Watt, Mariners Harbor, N. Y.-The bioct of this invention is to provide a new manner of propelling vessel3 en-
ploying the oar principle at the stern of a ship, said oars being moved in ploying the oar principle at the stern of a ship, said oars being moved
such a manner by machinery that the full power of eack stroke is utllized. Rotary Evgine.-Friedrich Fischcr, Garibaldi, Iowa.-This invention re ates to a rotary engine which is composed of an annular cylinder fited win of an abutment in the cylinder and through cavities or channels in said abutment made of two parts which close up by the action of springs and
which are forced apart by a wedge-shaped projection or secured to the Which are forced apart by a wedge-shaped projection or secured the piston has passed the abutment the two halvas thereof close up and the steam acts on tre piston until the wedge-shaped toe comes in contact with
the abutment and forces the two halves thereof back, steam being shut of at the abutment and forces the two halves t.
Washing Machine.-Charity Pendleton, Iowa City, Iowa.- inisis invention has for its object to improve the construction of the washing machine, pa
tented July 12,1859 , and numbered 24,754 , to which Letters Patent schedule of additional improvement No. 281 was annexed May $29,1860$.
Bedstead fastening.--James Maguire, Trenton, N. J.-This invention rails and pests of the bedstead.
Washing Machine.-Wilhiam K. Short, J. W. Allen, and J. Craig, Mount Pleasant, Iowa.-This invention has for its object to furnish a cheap, simple, convenient, and effective washing machine, which shall be capable of self

Lifting Jack.-Samuel Gulick, Klines Grove, Pa.-Thisinvention has for its object to furnish an improved lifting jack, so constructed as to be adapted to raising heavy machinery as well as carriages and was
time be capable of raising them to a considerable hight

TaEe-dp for Knittina machines.-Samuel Wara, Amsterdam, n. y. This invention relates to the take-up of knitting machines, whereby the action Horse Hoe.-Moses Chandler and John B. Nickels, Kenduskeag, Me.-This nenionconsists principally in adjustably attaching wings or blades to the ends of the wings or blades. STove-pipe Joint.--H. M. Clifford, Philadelphia, Pa.-This invention con
sists in forming the joint, where lengths or gether without lapping them, and in such a manner that while the joint is equally tight the facility with which the pipe can be put up and taken down i greatly increased
Spring Bed Bottom.-David Manuel, Boston, Mass.-This invention consists in attaching the slats of the bed bottom, by means of slots, hooks, or notches formed in or attached to the under sides of said slats, to coiled
looped springs of a peculiar form, and in the combination of rubber roller looped springs of a peculiar fo
with the loops of said springs.
Window-shade Fixture.-L. A. Tripp, Midaletown, N. Y.-This invention has for its object to furnish an improved tixture by means of which window
Combindd Table, Cupboard, Clothis Rack, etc.-W. M. Baker, Fort ville, Ind.-This invention relates to a table, with which is combined a cup board, a clothes rack or frame, and a rack or frame for the reception of tinware, together with drawers, trays, and a rolling board, in such a manner as to be most convenient tor use when so desired. and when not in use suscepti-
ble of being enclosed within the body of the table.
Sinking Bored Wells.-Peter Ollon, Muncie, Ind.-This invention con sistsin an improvement in the auger and in the manner of hanging and oper ating the same for the boring of the wel
Boor Crimping Machine.-John Joslyn, Canton, N. Y.-By the machine
embraced in this invention the leather which is to be crimped, is drawn bemeen two hates tween two plates having series of circular depressions or cavities in their op
posite faces, by means of a suitable shaped former, so arranged as to move between the said plates; the circular depressions working the leather, and
condensing such portions of the same as are necessarily filled, as well as ma. condensing such portions of the same as are necessarily filled, as well as ma-
terially addingin the fillng process, and causing such a hold to be had upon he leather asit is draw between them, as to stretch it out to the utmo xtent.
Self- winding Clocks, Ttmepteces, and oteer Maceinery.-F. G. A.
Horstmann.-This mechanism consists of a tube constructed with a metalic piston, packed and cupped with one or more layers of leather or other materials, with a spring for keeping the piston pressed close home on the fluid in
the cylinder. The piston works up and down within the cylinder, forming a the cylinder. The piston works up and down within the cylinder, forming a ontaining naphtha, spirits of wine, or other expansive fiuid-glycerin o ther oily matter being used therewith to prevent the evaporation of the causes the same to expand or contract, thereby causing the piston to rise and
fall, thus producing an impulse or motion either in a horizontal or vertical direction. To the said piston the inventor atta准es a rod, and by means of cross bar he causes a drum or wheel to revolve and carry an endless chain,
which is passed over the main wheel ot the clock, so that it hangs in a loop on either side, and to each of these loops he attaches a weight for giving the necessary working power tu the clock and setting in motion the train of wheel work. This principle is also peculiarly adapted for raising greenhouse or hothouse windows, and for other similar parposes.
Doors of Safes, Strona Rooms, and other Receptacles of Property J. Jessop and W. Warburton.-The object of these improvements is to pre weans tor the forcible opening of the doors or covers of safes, strong room nd other receptacles of property. For this purpose, in place of the edge or of being formed straight, or of a series of straight lines, simply fitting close inte one another, as is the usual manner, the patentees form the edge around
the door or cover and the surround ng frame, with a series of short corrugations, serrations, or
surrounding frame
Illuminating Gas and Oil.-G. McKenzie.-This invention relates to the il or other mineral oil, and in subjecting the mixture to distillation or composition at various heats.
itreparation of Peat for Rendering it applicable to the manufac turf of articles which are Capable of being Produced by Stamping,
Mondina, Embossing, or Roluing--T. G. Ghislin Montion the patentee takes any of the common kinds of peat, and having ex
 or comminuted seaweed, with the addition, if required, of any suitable gume uch as india-rubber, gutta-percha, or other substances of that class, or in a dition ther o may be added resins natural or artificial, bituminous or albu minous substances, pitch, paratfin, stearine, or other oily and fatty matters
to give a body and firmness to the mass, chalk, talc, sulphur, silicous, other earthy matters may be added. Waste fibrous and woody substances sheets of the material, as for floor-cloths, and if the surface is intended to be painted, metallic oxides, such as white zinc, or ochre, alum, and other anal

Mandfacture of Ioe to fit it for Making Empervescine Drings, Rtc,

- . W. Jeyes.-The inventor partly fills a vessel wita the water, into which de W. Jeyes.-The inventor partly fils a vessel witn the water, into which contents into a solid state, opens the vessel and removes the ice, which may

Auswey to entrognudeums

A. S. J., of N. Y.-The velocity of water issuing from an

 oris ee depend apon the ordinary laws of falling bodies, making proper fall or head of water ofll feet is 32 feet per second. If the orifice, in this case, be p aced ${ }^{\text {against a a current of }}$ of water of the same velocity, there will the orifice if velocity of current be greate rise in the pipe, if less the water will run out. From such data you cancalculate the velocity a ship must have to discharge bilge water by means or a pipe which terminates in the outside water, and has its direction turned backward in the path of the ship. In this case the head of water surface of the bilge water.
surface of the Cige water.
J. M. S., of Conn.-It was promised by Act of Congress that the diameter of the new five-cent coin should be one-fifth of a dccimeter Our correspondent has neeasured it and found it to be 81 inch a ads5. 81.4 .405 .
But a decimeter is $315-16$ inches. We have noticed the alleged error before. C. W. D., of -. -When an electro-magnet has become saturated no increase of battery power will give it a stronger lifting
power. The diameter and length of the wire used for electro magnets power. The diameter and length of the wire used for electro magnets
should correspond with the intensity of the battery. A current of intensity should correspond with the intensity of the battery. A current of intensity
will move through a fine wire, and low intensity requires a thick and short wire. But the magnetizing power is always proportioned to the total J. E. B., of Mass.-The force of a fly wheel, (its power to strike a blow, etc.) is proportioned to the square of its velocity : double
applies to all such cases, m being the weight of the matter in motion and
v the velocity. The case of the fiy whecl is somewhat complicated from the fact that the weight is not evenly distributed, different parts moving With unequal velocities. Thus, though a rule for calculating the force is
simple enough, it is impracticable to obtain the data for its application is best in practice to determine the force under a given velocity by mean of friction brake or otherwi ee, and then to this apply the formula
or all other velocities
. M. H., of Pa.-The alloy of iron and manganese commonly used in the Bessemer process is produced directly from the ore. In
Europe the alloy is known as Spiegeleisen and is produced in Germany. In the United States a similar alloy is found as a residuum in the manufacture of zinc paint from an ore known under the name of Franklinite. This Franklinite "ferro-manganese" can be procured from the N. J. Rinc Co
There is an abundance of ores in America capable of producing "ferro There is an a
L. G. T., of Conn.-You will find information on the subject J. W. W., of Ala.-Water is so little condensed by pressure that even at the depth of five miles in the ocean it would be but a trife
more dense or buoyant than at the surface. The Atlantic Cable is sever times heavier than water, and there is no doubt that it rests firmly on th . R. M., of Pa.-The clarifying of turbid river water by subsidence or spontaneous settling, is cheaper than filtration where a larg
cuantity is needed for manufacturing purposes quantity is needed for manufacturing purposes. We saggest that settling
tanks or basins may be more practicable in your case. Perhaps the best filtering medium on the large scale, is simple clean fine sand. C. C. P., of Ind.-It is a disputed question if genuine diamonds have ever been made artificially. But since we know that diamond The principal forms or conditions of carbon are : charcoal, plumbago, an thracite, lampblack and diamond. We know how to put carbon into al L. E of Pa_{C}-It is aid th L. E., of Pa.-It is said that an excellent way of preserv ing natural fiowers is to dip them for a moment into a solution of paraflane
in benzine, or into melted paraffine. By either of these ways the flower in benzine, or into melted parafine. By either of these ways the fowe
are covered with a thin film of transparent paraffne which exeludes the destructive effect of the air. Perhapssome correspondent will give a bette
R. M. L., of Tenn.-Mica is a natural product, and no solvent forit is known, at least no solvent from which it can be recovered. In
its chemical nature and composition it is quite like glass; both are siliW. B. S., of Pa.-A substitute for bricks made of sand and lime is not new. There is a company in this city making such an article
which looks very well. . . . Meerschaum may be mended with glue which looks very
or shellac. G., of O.-You may find in previous issues several processes for coppering iron. One of the most recent, is to immerse the iron
in a solution of tartrate of copper made alkaline bv the addition of caustic soda. By practice only can you find the proper method for your purpose. B. C. S., of Pa.-Civil engineering is taught as a speciality at the scientific schools of Harvard, Yale and some other colleges. In this
city there is an excellent school for the special education of engineers under the charge of Prof. J. G. Fox. It you have no embarrassment con-
cerning money you should attend one of these schools ; otherwise the cerning money you should attend one of these sehools; oth
best course is to secure a place under some practical engineer.
J. M. P., of O.-The nebulae of Orion have been resolved since the death of Sir Wm . Herschell. The nebular theory ${ }^{\text {I }}$ of $L a$ Place, however legeis without d oubt more valuable for all ordinary astronomical purposes than that of Lord Ross.

zusimezs and exrsoual.

The charge for insertion under this headis 50 cents a une.

Wanted.-Best wool carding and spinning machines and power looms. Manufacturers send circular and price list to C. Picard Geo. Davis, Martin's Ferry, Belmont county, Ohio, wants a spring, 11 inches wide, length, 30 coils, to coill ap on 21 -Inch shaft, and to
be twice as strong as an eight-day clock spring. Will some spring maker
W. T. S., No. 1,702 Chestnut street, Philadelphia, Pa., desires descripivec Irctuars of metallurgicalfurnacesof all kinds.
Improved wood lathes wanted. Send cut with description and price list to Geo. W. Sweet, Flint, Mich,
John G. Clark, Guyton, S. C., desires to correspond with Staveless barrels are
D. Ingersoll, Monroe Wich. S. Corning, Fort Edward, N. Y., wishes to communicate with makers of wooden shoes.
Paper-making machinery is inquired for by James $W_{\text {rigbt }}$, Florence, Ala.
S. S. Perry, Utica, Ill,, wishes to know where he can pur-
chase asbestos.

