THE CHILDREN OF MECHANICS.

The home is the center of human happiness, so far as happiness concerns our brief earthly life Any thing that destroys home is inimical to hap piness. Home, comprising wife, children, friends, with the domestic castle, is essential to the proper development of the best qualities of our nature and to the well being of all who have the least amoun of civilized human feeling. The influences of home, more than the state of the market, the rate of wages, the condition of business, affect the workman. He can withstand the lowering of the price of his productions, the temporary depression of profits in his business, or the unforeseen fluctuations of the market, if he is sustained by the influences of home, and if he can be assured that his children can avail themselves of advantages which will enable them to retain their position and provide for themselves and those dependent upon them when he shall have left them. Then the future is humanly secure-for the present he can provide.
But what if there is a perpetual struggle at the present, with a gloomy uncertainty of the future. The man is deprived of all his vigor of mind, his enterprise, his pride. Yet such is the condition of thousands of industrious men in England. A correspondent of the Pall Mall Gazette, who has visited some of the iron furnaces in the "black country" of Staffordshire and Worcestershire says:-
In the mills and forges boys of all ages, from eight and upward, may be found amid the labyrinth of machinery and the coils of heated iron, engaged by day and night in tugging long, red-hot seething bars. Their activity is very great, owing to the nature of their work, which requires rapidity of movement, and contrasts strangely with their otherwise jaded and worn appearance. In addition to the labor of dragging sinng the iron, each of these little fellows has to run, in short stages, a distance of more than eleven miles every day, in an oppressive atmosphere, thick with dust and steam. Owing to the quick and uncertain movements of the hot iron bars in their passage through successive rolls before having time to cool, the occupation of these boys is attended with some danger-a serious burn being an almost every-day occurrence.
Standing in the midst of an extensive forge, a few years ago, I was alarmed by a cry of terror at the further end of the works. There was a general rush to the spot, and I shall never forget the horrible and sickening sight that met our view. A large rod of seething iron, in coming from the rolls, had somehow twisted aside, and had literally pierced through the body of a little fellow some ten years old. For a while the roar of the machinery was suspended, and two or three brawny puddlers carried the hapless creature home; but when the first thrill of horror had passed away the wheels were again set in motion and all went on as before.
The lives of these boys are almost entirely spent in the forges, except the hours allotted to sleep. They have their meals there, and in the snatches of leisure it is their play-ground. In most of the works is the arm or basin of a canal, the water of which is kept in a state of chronic fever, and in which, despite its inky color, they delight to bathe, both in winter and summer. So constant are they in their ablutions that the often come out parboiled, like a washerwoman's thumb. Some of the proprietors of these works have provided night schools but, as a rule, they are in mind and body alike neglected, and the densest ignorance prevails. They have no home training, most of their houses being have no home training, most of their houses bell day, the parents and all the children being out at work ; and returning home fatirucd at night, nothing but bed or a carousalin the " $\mathrm{F} \circ \mathrm{x}$ and Dragon" is acceptable.
Returning home late one evening, I saw two little children, a boy and girl, lying asleep upon a door step, which proved to be that of their own home. On awaking them they told me that they were waiting for their mother to come out of the neighboring tavern, and open the door. They had no father and had been hard at work all day. The boy worked in a forge, the girl in a foundery, and the mother in a japanning factory, and though thus separated all day, there seemed no bond
fection to bind them when they met together.

In such a state of affairs there can be no legiti mate home influences. The father and mother, all the children whose infantile strength can be utilized, are employed at hard labor, day after day, and week after week, too wearied, after performing their allotted task, toexert themselves to make home happy. Life to them is an endless and exacting treadmill. The gentler virtues, which give a charm to feminine character, make childhood loveable, and
civilize and elevate coarse, masculine humanity, cannot grow in such sterile soil. What do our mechanics think of such an exhibit as the following
West of Dudley is a strange wild region known as the " nailing district," composed of scattered hamlets, to all the houses of which is attached what appears to the stranger a blacksmith's shop. The manufacture or wrought nalls is, n as century or more, the great staple industry of the houses. In few trades of the district does the n houses. In few trades of the district does the employment of women and young children assume a more objectionable form than in this. The women seem to have lost all traces of the modesty of their sex, and from childhood are addicted to swearing and unoking resemblity as faras possible the other sex in their habits ind deportment even to the wearing of their coarse flannel, jackets. They mostly marry very young, often at fourteen, and seldom later than eighteen or twenty. With such women or mothers, it is not difficult to judge of their children. From tenderest ages, often from five or six years, they are trained to that round of labor in
which their lives are doomed to be spent. The first stage is "blowing the bellows," and next they are taught to forge the smaller kinds of nails.
The hours of labor are dreadfully prolonged, often exceeding sixteen hours per day; the rate of remuneration is very low, and the houses are consequently wretchedy poor. Entering one of them lately, I saw the father, mother, and eight sons and daughters, all toiling in a small ill-ventilated dirty hovel. It was growing late in the evening, and I inquired, "Is it not time to cease your day's work ?" "Oh, noa maister," rejoined the mother; " we've a
noit's work afore us yet, or there'll be no bread o' the loaf o'.Sunday." It was Friday night, and it was, as I learnt, a practice to work from Friday morning until Saturday afternoon, without having more than short snatches of rest for meals. While I lingered, a little fellow, who could not have been more than eight, fell from his work, apparently exhausted, but handle his work He him with an oath, to recommence having, like his two eldest daughters, a short pipe in his mouth, which seemed to him and them "the calumet of peace."
American mechanics and laborers should feel grateful that neither they nor their children are consigned to such a hopeless and dismal slavery as this. The child of an American mechanic is treated as a child until it has assumed the virility of manhood. Home influences, schools, good air, od's glorious sunlight, and freedom, educate the child into a character above that of a human brute. These influences are absolutely necessary to the development of a rounded, manly character. Home is the primary school for such education, and when it cannot exist with a proper provision for its inmates, it is proof positive " there is something rotten in Denmark."

For the Sclentific American

THE STEAM ENGINE INDICATOR.

Perhaps nothing connected with steam engineer ing of such acknowledged importance receives so little attention among builders and owners of steam engines. Its use to the constructing engineer is of the most vital importance. Without it he works in the dark. His engine may be well and properly proportioned, yet h1dden defects may exist in the steam passages by the falling or washing of cores which reduces or distorts the passages, yet are not easily detected by the eye.
The writerremembers during a somewhat extended experience many instances of this. In two cases he has found the exhaust passages entirely closed, and yet it was not detected until the engine had steam on it and an attempt was made to have it move. Other cases have come under his notice where the passages have been but partially closed-here the indicator reveals it at once. The writer knew of an engine 16×40 inches made by a popular firm for a party to put in a large building for the purpose of supplying power to tenants. The machine was got up with great care from new patterns, and being in a good location to show, it was intended as a model engine by the makers.

It proved to be, however, a very expensive machine to run. New and improved bollers were put in but without materially reducing the amount of fuel consumed. The engine was overhauled repeatedly by the makers, who did everything within their knowledge to improve it, but without effect. The power generated cost too much. The landlord lost money and failed ; the same result followed his successors,
and finally the engine was thrown out and its place supplied by another with good results to the owner of the property.
The old engine was offered for sale, and sold to go in an armory in an adjoining State. It was overhauled and put in good condition so far as could be seen, and put at work, but with the same result-a large consumption of fuel for the power available. After all other expedients had failed, the indicator was applied, when it was found that with an initial pressure of 60 pounds there was a back pressure of 15 pounds! Here, then, was revealed the cause of the trouble. On examination, the exhaust passage was found obstructed; the cores had not met properly, and the exhaust steam had to pass through an aperture of about a square inch in area. On catting through the side pipe and removing the slight obstruction the engine performed a duty due to the fuel consumed.
On another point of great importance to the well working of the steam engine the indicator is invalu-able-the setting of valves. Most engineers think they can set their valves by the eye, but.an experience, somewhat extended, with the indicator has shown the writer that as a rule this is a fallacy; valves have to be set 'y the eye when the engine is not under steam, hence the expansion, the springing of the various parts, which cannot with certainty be ascertained, consequently it is seldom that they are right. The indicator, then, is the only way known by which valves can be perfectly adjusted.
Until the year 1862, the instrument in use previous could not be used on engines of quick motions with any satisfactory result. At the great exhibition of that year, in London, an indicaton was exhibited, invented by Mr. Charles B. Richards, of Hartford, Conn., by which diagrams, correct and entirely reliable, are taken under any attainable speed; hence locomotives and any other quick-running enginesare indicated with equal accuracy as the large slow-moving marine engine.
Another important fact is proved by the indicatorthe exact amount of power exerted by the engine ; this, compared with the fuel consumed, enables the engineer to compute with exactness the cost per horse-power, also the quantity of power used for certain work or by different tenants. About this there is no guess-work ; it is absolutely weighed and measured.

The custom of renting power by a belt of given width and velocity is fallacious. It is easy to tell what power a belt should transmit, yet it is utterly impossible to tell how much it will trannmit ; so many contingencies arise, some of which follow the quality and condition of the belt, the condition of the pulleys, the amount of contact with pulleys, the position-whether vertical, horizontal, or diagonal ; which side is the draft on; whether the grain or flesh side is in contact with the pulley, the tension, the condition of the atmosphere, etc. The only reliable mode is to measure the work by the indicator. By it we can ascertain the comparative value of different kinds of fuel, also of lubricants, the ability and faithfulness of the engineer and fireman. In fine, all elements which assist in making and using steam efficaciously and economically.
F. W. B.

Large Indla-hebiber Ball Valve--Some india rubber ball valves, five inches in diameter, have recently been manufactured by the New York Belting and Packing Company. These are the largest valves of the kind made in this country, and are preferable to brass by reason of their noiseless action, uniform tightness, and lightness.

The Secretary of the Treasury, upon a question submitted to him, has decided that iron, whether imported or domestic, to be used in the construction of steam boilers for vessels, must be stamped in the manner required by law, otherwise the makers or users will be subject to a penalty.

It is stated that the method of protecting gunpowder by mixing it with ground glass, patented in England by Mr. ale, is of no practical utility, as the sharp particles of the glass cut the grains of the powder and reduce it to meal in the process of separating the two s ubstances. This report lately appeared in a foreign journal.

