product multiplied by the number of cubic feet of water to be converted into steam, will give the total amount of fuel required in this case
Making the proper allowance for the pine wood in lighting the fires, the weight of oil consumed in the experiment was 60 lbs .; the contents of the boiler was 200 cubic feet, at a temperature of 60°, which was heated by this weight of oil to the boiling point $=212^{\circ}$; thus the weight of oil which heated 200 cubic feet one degree was the weight of oil which was requisite to heat one culic foot of water one degree was $\frac{\frac{3}{2} 90}{200}=.0019 \mathrm{lbs}$. This multiplied by $1,119=2 \cdot 126$, and this by the 200 cubic feet of water in the boiler, gives 425 lbs . as the weight of the oil which would convert,the contents of the loiler intosteam at the atmospheric pressure
 at a temperature of 60°, which will be converted into steam by one pound of oil. From Isherwood's valuable experiments, on marine boilers-we find this same type of boiler in use on board the U. S. Steam-ers-and from the mean of the experiments conducted on these boilers, we find the quantity of water evaporated, from a temperature of 100° with stean at the pressure of the atmosphere, by one pound of anthracite coal, to be 8.5 pounds. To compare this with the evaporation made trom a lower temperature of water by means of the oil, this weight must be re duced in the following ratio, established by Isher-
 $8 \cdot 5$, gives $8 \cdot 16$ as the weight of water at 60°, converted into steam of atmospheric pressure by one pound of anthracite coa!

Comparing this result with that above shown for the product of the comijustion of oil, we find the evaporating power of the two fuels to be in favor of the oil, in the ratio of $29 \cdot 33$ to $8 \cdot 16$, or $3 \cdot 6$, weight for weight; the coal and the oil occupying about the same spacefor a given weight. That is to say, a cuvic foot of coal as stored aboard ship, will weigh about the same, or a little less, than a cubic foot of oil, the first weighing from 43 to 52 pounds, and the latter about $54 . \mathrm{Jbs}$. to the culic foot.
Further experiment, with inproved apparatus, will be necessary in order to determine the precise economic vaiue of this fuel in comparison with coal, but the advantages of the oil as a fuel for marine engines may be briefly summed up: as tollows:-
Rapidity with which steam may be raised-reduced dintensions of boiler and furnace below that required for coal-the continuous firing effected by feeding the fuel through a pipe into the furnace, thereby preventing the great loss of heat in the furnace every time a fresh supply of coal is thrown on, and the rush of cold airupon the opening of the furmace cloors -the freedom trom smoke, cinder, ash, or refuse of any kind, which in coal reaches trom seven to over sixteen per cent ot the whole amount. In the ability to command a forced fire almost instantly, without a forced draught, which, under some circumstances at sea, is of vital importance. In dispensing with the numerous class of coal heavers, stokers, etc., and all the inconvenience of raising clinkers and ash from the furnace rooms; and finally the liminished spase occupied in the storage of the fuel.

Respectiully submitted,
Jllius W. Adams, Eugineer.
The above experiments were made in presence of Capt. Bythesea, R. N., Sec'y. of Her Brit. Maj. Legation at Wazhington; Cyrus W. Field, Esq., Hon. James Wadsworth, Hon. Horace Greeley, Hon. David -Dudiley Field, John E. Williams, Esq., President Metropolitan Bank; William A. Thompson, Esq., VicePresident Erie and Niagara Railway; Geo. W. Quin tard, Esq., Morgan Iron Works; Mr. James Farron, Superintendent Morgan Iron Works, and officers of the Company.

As ons of the workmen employed at Whitewell's Blast Furnace, South Stockton, was recently taking a slag ball from the furnace, a tipper named Henry Badley, was about to tip it when it burst, and the molten slag flew over him, setting his clothes on fire, burning him severely on various parts of the body, and melting his watcl.

There will be but oire eclipse this year that sill be visibie to ub-is tetal aciblet of the noon, fareh, Pab

the foot lathe.
 Number 8.
 [Contiuued from page 66.]

An indispensable article on a foot lathe, where any fancy work is to be done, is the centers-of which we have before spoken-shown in Fig. 40. These consist of a common set of neads, with spindles fitted to them. One spindle has an index plate and spring, and the other has a common center. These heads set on a slide that is moved back and forth over a rest, screwed to the lathe bed as usual. It is easy to see that with this we can do some very fine cabinet work. Suppose we have a round vase turned up handsomely, and we wish to flute the base or make it a series of curves all round; to do this we haveonly to put it in the centers, set the index so as to come out even, as before explained, and $\underset{\sim}{\text { ro }}$ ahead.
screws in it, as shown. The set screws go through

Fig. 40.
The kind of cutter to be used is a sort of grouge set in a cast iron head, something as a plane iron is set in its stock. That is, fitted tight to a groove and held by a set screw. Two of these cutters should be used at equal distances apart, and the cutter head should be keyed on a short shait set between the main centers ol' the lathe. The whole should be accurately balanced, or else the work will be full of chatters or ridges. Sincecentrifugal torce increases as the square of the velocity, any thing that runs a little out of truth will be very much exaggerated as the speed increases. By using cutters of lifterent shapes, beautitul etfects can be produced; as, for instance, suppose we take a common round-nose cutter, set the index so as to divide the circle ot the job we are to work on in twe 4 ty four parts, and execute that part of the desigu, then take a tool forming an ogee and work out the spaces intervening, we shall find that the article, when completed, will have a beautiful appearance, and ihat instead of being round the bottom will be octagonal, which will present a pleasing contrast to the rest.
The centers can be set at any angle with the cutter shaft, and a pineapple pattern can be made on straight surfaces by executing one part at one aiigle, hen reversing the rest that carries the centers, and finish the renaincler, one part of the patterin crossing the other.

Fig. 41.
We present herewith views of a novel ornament yhich exhibits great mechanical ingenuity and manual dexterity, 'Jut is otherwise of no value. It consists, in one form, of a globe with a series of rings or globes inside, and a six-armed 'spur projecting throush holes-all cut out of one solid piece.
This figure shows how the points ate turued. After the internal rings are cut out with a quadrant tool hike Fits. 43, and the srour also severed, by cutting in the eidds of the holes (not boring them out solid), the globe is put in a shell chack with three set
leave a the case, for the inoles being bored so as to

Fig. 43.
make the points of the spur), the severing tool falls into the holes and goes no further, and each division serves as a guide for the tool in the next hole, so that the glube is made the same size, without jags. The quadrant tool, shown betore, must be followedround

Fig. 44.
the shell in the act of cutting it out, so that it wif make the same round, and the glole must be shifted in the chuck to reach all the holes. It is no easy task to make this little affiir, for all it looks so simple.

Arrangements have been made with Mr. G. W. Beardslee for the puachase by the Government of the torpedo implements used by him in destroying vessels of war, harbor obstructions, forts, and batteries, etc., by means of submarine explosions. Mr. Beardslee has recently been occupied at Cha!ham in making the prelin:inary arrangements for some futher additional experiments on a much more extended scale than any previously undertakin, with the object of furlher demonstrating the importance of the new agency for the destruction. of forts and vessels of war.

Mr. G. W. Cushing, master mechanic of the Chicago and North-western Railway, has sent us a spirited colored photograph of locomotive designed by him for the company, for which we return thanks.

Tue application from the artisans employed in the diferent dockyards for an increase of wages, bas been refused by the Enolizh . Wminalt?.

