Srimutifi American.

NEW YORK, JUNE 18, 1859.

Snecial Notice

All subscribers to the Scientific American who have paid the full subscription price (two dollars) for the complete volume which has heretofore terminated in September, ar informed that by remitting $\$ 160$ more, their subscriptions will be continued for one year on the New Series commencing July 1st.

Clubs of subscribers who have paid up to September, and wish to renew their subscrip tions or form new clubs at that time, can do so at the club rates, deducting 30 cents each from all the present subscribers and complying to our advertised rates on new ones; for instance a club of 10 subscribers who hav paid $\$ 15$ for one year's subscription op to September, may have their subscriptions continued till the end of Vol. II., New Series, o one year from July 1,1859 , by remitting $\$ 12$

Ancient Tables of Wood.

A very geueral opinion prevails that the rich folk of ancient days were rather a poor set of fellows in comparison with our mo dernnabobs; and that they could not afford to buy decent chairs and tables for their parlors. We are also liable to lift up our lands in astonishment at the domestic extravagance sometimes displayed at the present day, and to consider that this is the age superlative of foolish expenditures for fancy bits of household garnishings. We rather think that with all the public, self-complacency for modern grandeur, the old Romans would "take the shine" out of us, in the table line at any rate. Pliny states that Cicero once paid about $\$ 45,000$ for a fancy table of citrus wood, and that one which had belouged to King Juba, on being exposed at auction, was knocked down for the nice little sum of $\$ 54,000$. As Cicero was a Roman lawyer, we would like to know which of his disciples in New York could afford to present such a comfortable table to his amiable spouse at this day.
Among the Greeks and Romans there existed, for a period of 150 years, a ruling passion to possess beautiful tables of citrus wood, the finer specimens of which were compared to gold for their value. The veins of this wood run in spirals and wavy lines, and these were rich and brilliant in their colors, being a mixture of wine-and-honey colored veins. Its polish, without any varnish, was brilliant as glass. It had a fragrant odor, and for this reason it was sometimes employed in religious sacrifices and for statues of the heathen gods.

A knowledge of the tree from which tbi famous wood was obtained has been lost for centuries; but a correspondent of the Londo Builder states that it is the callitris quadrivalvis or wild-spreading cypress of Mount Atlas, and that the most fancy pieces employed in the ancient ta bles were obtained from excrescences or knots, something like the elm linots of which wooden bowls are frequently made in various parts of our country. The homan citrus tables were generally of a round shape supported on ivory legs, carved out to repre sent those of animals.
The principal ornamental woods now used in the manufacture of fine furniture aremahogany, rosewood and black walnut-rosewood being the most highly esteemed, not because it is finer in the grain than mahogany, but because it has the greatest contrast of colors and is not so monotonous to the eye. In California there are some beautiful colored woods which have not yet been introduced into our cabinet-work; but they no doubt will yet find a place in the parlors of our people, if it were upon no other consideration than to afford pleasure from their variety. A few
years ago curly and bird't-eye maple were mployed extensively for making chairs and other articles of furniture, but the demand for these woods has almost ceased. Splendid logs of these kinds of maple, which a few years since would have brought a high price, are now burned for fuel in various portions of our country, there being no demand for them or any other purpose. The peculiar appear ance of these woods is now imitated by taining soft timber, which is so much easie worked that cabinet-makers prefer to operat with the imitated rather than the genuine article. Oak has recently come into pretty good repute in chair-making, and it is cer tainly a very beautiful wood for this purpose ut not equal to American bird's-eye maple.
The fashion for tables, at present, is ver different from that which reigned in Rome in the days of Cicero; fine marble, not wood, being the prevailing material employed for the tops. Our taste may not be so refined as that of some others in this respect, but we certainly think marble is inferior to fine wood in point of beauty for this purpose ; it is to ally devoid of that warmth of color which is pleasing to the eye in rosewood and the finer qualities of mahogany.

A New Motive Agent.

In the year 1836, the French chemist, Thilorier, succeeded in producing solid carbonic acid, which up to that period had only been obtained in the state of a gas and iquid. Soon after this, Faraday repeated his experiments with success in London, an afterwards Natterer, of Vienna, simplified he method of making it. This acid in the iquid state, owing to its great sensitivenes to heat was proposed by Brunel as a motive nent is 1822 , now Dr A. H Eumive Pren rofessor at Stettin, Prussia, proposes (in Dingler's Solytechnic Journal, from which the
fullowing is translated for the Scievtific American,) to employ it in the solid state for the same purpose.
He says: "I-consider solid carbonic acid is a new motive agent, which may be able to upersede steam in locomotives, and by which the navigation of the atmosphere with balloons may be rendered practicable. Faraday states hat carbonic acid is a singular substance on account of the high pressure which emanates from it in passing from the solid state; there is nothing equal to it in this respect, and it reverses the natural order entirely of othe substances. It has the form of snow, and also of crystals which are so transparent that it is difficult to distinguish them from the pure glass bottle in which they may be kept If solid carbonic acid is not enclosed in ves sels of great strength, and sealed up perfectly tight, it passes into gas, not suddenly, like gunpowder, when a match is applied to it, but by degrees in the same manner that ice form into water Its vapor has an expansive force or pressure which increases with its temperaure in the ratio of 23 atmospheres at zero, 29 at 16°, and 38 at 32°. On this high expanive force, together with the slow evaporation of solid carbonic acid my ideas are founded or using it as a motive agent

The only difficulty in the application is the production of the solid acid iu snfficient quantities. It bas been made hy Naticrer from chalk treated with sulphuric acid in quantiies of scveral pounds at once, and an appara tus such as he used, and which is able to with stand a pressure of 2,000 atmospheres is now sold in Vienna for 100 florins ($\$ 50$). If a demand were made for this solid acid, it may be produced in any quantity. If this can be done, the next thing is to make experiment frst to move small loads on railways. M dea of rendering this power useful is on the principle of reaction-that is, in the same manner which causes the motion of rockets Let a vessel of sufficient strength, filled with solid carbonic acid, and provided with stop-cock or valve, be fastened on a light carriage having one person to direct its motion, and let this vessel be considered as similar to a rocket with its mouth behind. When
its valve is opened, the solid carbonic acid will assume the gaseous condition, and its great pressure in escaping will move the carriage in the opposite direction, with a velocity and furce equal to the pressure and the area of the rocket vessel. With the employment of a sufficient force of this kind, several railroad carriages attached together in front of the driving one may be propelled glong a railroad. The idea appears to me be worth trying, and, if successful, large and costly locomotives may be done away with, as this power will act directly; and heavy engines, to provide sufficient adhesion on the rails as now required, will not be necessary, and the power now consumed in overcoming the resistance of the machinery will also be avoided. By attaching such rockets to the gondola of a balloon, it may be steered in any direction at pleasure. I, however, do not expect that much henefit will ever be derived from aerial navigation, as balloons will always be subjected to the same influences as sailing vessels on the ocean. The principal advantage of this motive agent would be its application to railroads."

Death of Consul Rovertso
Col. W. H. Robertson, for many years U. S. Consul at Havana, and favorably known almost everywhere, died in that city on May 28 , at the advanced age of 82 years. We were permitted to enjoy the personal friendship of Col. Robertson for many years, and the last time we saw him was in August, 1858, on his return from a visit to Saratoga, where he had gone with his family in quest of health. He returned to Havana early in the Fall of last year, and from that time until his death he gradually wasted away. He was a somewhat remarkable man in many respects; he was always an efficient public agent; had roops of friends, and never lost them even when under the cloud of adversity. For political life, however, he had no special taste; he preferred the study of practical science, employing much of his time in various fields of investigation, and had stored his mind with a large share of information bearing upon all the leading industrial arts. He was also the inventor of several useful improvements, some of which he secured by Letters Patent. He had a great anxiety to perfect, before his death, an important improvement in the clarifying of sugar-a su bject on which he had expended much time and thought ; and in the furtherance of this object he consulted many of the first scientific men of the time. While in Europe, a few years ago, his attention was attracted to the brilliant experiments of Andrew Crosse, the celebrated electriciav. Col. Rubertson's idea was that, by the aid of electricity properly applied, he could accomplish all his o bjects in reference to the clarifying of sugar. Crosse had succeeded, by the action of a voltaic battery upon a tumblerful of water taken from a cavern, in producing, in a few days, crystals of carbonate of lime; he also made some curiou discoveries in reference to the effect of positive and negative electricity upon vegetation, and discovered a process for purifying salt water by means of electricity. These facts coming to the knowledge of Col. Robertson, he determined to seek ani interview with Mr. Crosse; a correspondence was opened between them, which resulted in a visit of the former to Fyne Court, the estate of Mr. Crosse in Somersetshire, England; and although no practical results insued from this interview, Col. Robertson nevertheless continued his researches, and doubtless died fully impressed with the belief that, by the aid of that subtile agent, this desirable object would ultimately be attained. For sometime previous to his death, he was engaged witha company in Havana in the manufacture of bricks from the sands upon the shore of the island of Cuba; these sauds are composed in some measure of disintegrated particles of shells. He was deeply interested in the discovery of a method whereby artificial stone suitable for building purposes could be economically produced. The
discoveries of Hardinge, of this city, and Ransome, of Ipswich, England, in the reduction of silicates into liquid form, as published in the Scifvtific American, interested him. He mado efforts through us to procure from Mr . Ransome samples of his product for the purpose of experiment in the island of Cuba, but without success. His iuterest, however, in the progress of science and invention continued up to the day of his death, as it was only a short time previous to this sad occurrence that we were professionally employed to prepare some patent papers in reference to a useful improvement. His body was embalmed by his physician under arrangements made some time previous to his deatio ; and it is asserted that in all his preparations for the close of his earthly career he was probably more composed than he would havc been in preparing for a pleasure tour to Europe, which had been in his contemplation. We shall miss the manly form and pleasant society of our friend, and all that we can add, i_{1} conclusion, i_{s} that he was a good citizen and an honest man.
Iron Ships-Water-Tight Compartments.
The benefits arising from constructing ves sels with water-tight compartments were fully displayed in the case of the iron screw-stean ship, Elinburgh, which plies between this city and Glasgow. On the 6th of June, when 186 miles east of St. Johns, Newfoundland, she struck au iceberg while in a dense fog, and her forward plates were stove in by the collision. Being divided into water tight compart ments, two of these at once filled up, but the others floated the vessel for thirty hours afterwards, during whish period she run back to St. Johns. It is related by the Newfoundland papers that the captain (Cummings), officers, crew and passengers, conducted thiemselves with great self-possession and courage, and that excellent discipline was maii tained throughout. Had this vessel not been built in compartments sbe would have sunk to the bottom in half an hour after she struck.
Sumplenent to the "scientitic American,"
It will be recollected by our readers that on the 16th of April, we issued a double number of the Scientific Americin containing a history of its rise and progress; also, a rare and valuable collection of notes and information upon patents and patent law. It is the best popular treatise on the subject ever published, and should be in the hands of all who are interested either in procuring, managing or using patented inventions. An extra edi tion was published at that time, but it was soon exhausted, and in order to meet the con tinued demand, we have just issued another edition of twelve thousand copies. It is published in quarto form, sixteen pages, similat to the forthcoming new volume, and copies are mailed upon receipt of two three-cent stamps.

Libraries tor Railroad Engineers.
At Altoona, Pa., where the machine-sh pos of the Pennsylvania Central R tilroad are located, there is a large library for the journeymen and apprentices to which they resort for mental instruction and entertainment. It is kept in order by volunteers from the shops, who alternately discharge the duties of librarians, \&e., after working hours. There are libraries connected with various factories and machine shops in our cities, such as the fac tories at Lowell, Mass., and Mesers. Hec's machine-shops in this city, and these institutions we most heartily commend as evidences of liberality and enlightened uuderstanding on the part of their proprictors. We also re commend the example of he Altoona machine shops to all the other railroad establishments in our country.
We have to thank Mestrs. Grover \& Baker, the celebrated sewing-ibachine manufactur ers of this city, for an excellent map of New York State. It is engraved by J. H. Colton \& Co., and does every credit to to those popular map publishers.

