Acivice about Lightring. It is calculated hat at least fifty persons are killed by lightning every year in this country, and as the season is approaching whon casualties of this kind are imminent, a few words of advice and caution upon the subject may serve as a safeguard, if carefully observed.
During the prevalence of a recent thunder storm which visited the town and vicinity of St. Petersburg, Ill., two men were suddenly killed by a stroke of lightning, which decended the chimney of the house in which they were residing. One of the unfortunate victims was in the act of winding a clock that stood on the mantlepiece, and the other was standing immediately behind him, when both were struck lifeless. Two women were at the same time sitting in the room and escaped injury, as they happened to be seated some distance from the chimney.
When the lightaing's flash and the thunder's crash are seen and heard almost simultaneously, it is a sign that danger is at hand, and the next bolt may strike the tenement which affurds us shelter. To know the place of greatest safety upon such an occasion is important knowledre. This science clearly teaches us, and as a fuithful monitor, its voice should be heard with attention,
The earth and atmospbere are saturated with electricity, which ordinarily remains in a state of equilibrium. When this condition is disturbed we have the phenomena of thun-der-storms-which is simply an effort of nature to restore the electric equilibrium bet ween the atmosphere and the earth. The atmosphere in such cases is converted into a huge Leyden jar ; the lightning is simp'y disraptive discharges through the intervening air; and thunder is the sound caused by the violent and sudden compression of the air-producing waves, hence the long continued roll like the discharge of artillery. Lightning is the most subtile and irresistible power of nature. A single flash can shiver the tall mast of a war-ship that might bid defiance to a cannonade, or rend the lofty oak of the forest to splinters in an instant; and a single bolt has toppled the tall church spire to the dust in the twinkling of an eye. What is the puny power of man before suci a mighty agent? It is pbysically frail as a feather or a trembling leaf. Armed in the panoply of science, however, man, like a weak but skillful general, can macœuver his forces against this otherwise destructive power, and convert danger into comparative safety.

This discovery was made when Franklin proved the identity of lightning and electricity with his little kite. Electricity possesses the peculiar property of flowing quietly along or through what are called "conductors," such as copper, gold, iron, \&c.; and taking advantage of this, the American philosopher suggested the erection of tall rods of iron or copper on houses and ships, to tap the Leyden jars of the atmosphere, and convey their charges quietly and safely to the earth. This suggestion carried out has saved thousands of lives and millions' worth of property, hence all houses should be provided with such conductors; but as is the case now, perhaps the
great majority of buildings will always be great majority of buildings will always be
uns'ppplied with such agencies. In all such cases, it should never be forgotten that the lightning always seeks to pass to the earth by the nearest prominent conductors, hence we have an explanation of the cause why trees, masts of ships, steeples of churches, towers, and cherse standing so near the fire-place on the occasion of a thunder storm which cost them their lives. In such storms, persons in houses should sit or lie in some place as far distant as possible from the chimney, and the most exposed parts of the walls-the middle of the room, if it is large, is the safest locality. Salors on the sea should keep as far from the masts ae seek shelter under treeg. Horizontal strokes
of lightning sometimes take place, and seve- \mid Venus might have used, and been proud of, ral persons have been struck while sitting at too open windows during thunder-storms. Every window of a room in which persons are sit-
ting, in such cases, should be closed; a flash ting, in such cases, should be closed; a
of the fluid, which would pass through an open window into an apartment, will be conducted down through the floor and wall to the earth if the window is shut. We have thus given some directions to be followed by all persons during the prevalence of lightning, and we have set forth the science of the question, so that all may not only see the reasonableness of our remarks, but their seasonableness also.

Making Perfume.

Have any of the uninitiated ever had any idea how perfumes are obtained from flowers? It is to many a mystery, an occult art a pretty kind of alchemy, a mild witchcraft. There is a rough notion of machines like miniature wine-presses, where the flowers were squeezed, and bruised, and mangled, and made to give up their perfumes in a rude masterful manner ; though it is puzzling to think how mignonette, or sweet pea, or any other flower which loses its odor when crushed or dead, could be treated thus to any advan$\xrightarrow[\substack{\text { tage. } \\ \text { The }}]{ }$

There are, it appears, four modes of obtaining the perfume of plants and flowers, The first is by expression-a mode only adopted when the plant is very prolific in its volatile or essential oil ; that is, in its odor. The outer rind or pellicle of the lemon, orange, citron, and a few others of the same class, is chiefly subjected to this process. The parts to be expressed are put into a cloth bag, and placed under a screw press; sometimes laid, without any bag at all, on the perforated late through which the oil is to run. When all the oil is expressed, it is left standing in a quiet place for some time, to allow it to separate itself from the water which came with . It is then poured off and strained.
The second method is by distillation-a method used for lavender, cloves, seeds, herbs, but not for the rarer flowers, the odors of which are lost by heat; only to be gained indeed by loving contact and careful mfluence. The only notable fact in this process of distillation is that, in France, they apply fire directly to the still; in England, they distil by steam. Excepting for this diff crence, thi mode of chemical manipulation is too well
known to need description here. The fire applied directly to the still sometimes gives a burnt odor to tbe distillate, which is not en tirely disagreeable in some combinations.
Muceration is the third process. Purified beef or deer suet is placed with purified lard in a clean metal or porcelain pan or steam bath. When melted, the flowers required to be used are thrown in and leff to remain from twelve to forty-eight hours; the liquid fat is then strained, and fresh flowers added, This is repeated as often as is necessary ; and the pomatum obtained therefrom is known as six, twelve, eighteen, or twenty-four, according to the strength of the odor. For perfumed oil the samo process is gone through; fine olive oil only being substituted for lard and net. Orange, rose, and cassie, are prepared hus; violet and reseda are begun thus, an nished by enfleurage
This is the daintiest method of all. Enfleurage, or ahsorption, is very little practiced in England, though uniformly used in France or all the finest odors. Square frames with glass buttoms are spread with a layer of fat about a quarter of an inch thick; and then sprinkled abundantly with flowers. They are suffered to remain forty-eight hours, when a resh supply of the spent and exhausted blossoms is given; which process is repeated over and over again until the pomatum is suffici-
ently poweríully scented. For perfumed oil, coarse cotton cloths are saturated with fine live oil, and laid on frames of wire gauze. These are treated in the same manner as the above; and, when thoroughly perfumed, are placed under a screw press and the oil wrung from them \rightarrow rich fllowery oil, such as Juno or

Odors are extracted frum various parts plants or flowers; different in different kinds. The roots of orris and of vitivert ; the stem or wood of cedar, santal and rosewood; the leaves of mint, thyme, and patchouli ; the flowers of roses, violets, and other flowers; the seeds of the Tonquin bean, and carraway, the bark of the cinnamon; many gums and resins-benzoin, olibanum, \&c.; these are few instances of the various odoriferous parts of different plants. Some indeed are more varied in their odoriferous elements. For in stance, the orange-tree gives three distinct scents, and most flowers give two, according to their manner of preparation. From the leaves of the orange-tree, comes petit-grain; from the fluwers, neroli ; from the rind, the essential oil known as Portagal. Again the orange flower or neroli, macerated in pomad is known as orange-flower pomatum. This, chopped up fine and put in rectified spirit makes extrait de flear d'orange, which is one of the most valuable bases to the perfume -passing, with slight modifications, for sweet-pea, magnolia, and scents of that class. Orange-flowers distilled with water give the otto known as oil of neroli. The petit-grain a quite different odor, is extracted from the leaves and the young unripe fruit of various species of citrons, and is used for scenting soaps. The neroli petale and bigarade help to form Hungary-water and eau de Cologne The water which was used in distilling the oil of neroli, when freed from oil, is eau de fleu d'orange, a cheap and fragrant cosmetic of tbree qualities. The first is made from the distilled flowers ; the second, of the water used in distilling the oil of neroli; and the third from the leaves, stems, and young unripe fruit of every kind of orange-tree. They are easily tested; the first turning rose-color un der a faw drops of sulphuric acid; the second turning rose-color, too, when quite fresh; but, after a short time thischemical result and the roma both disappear; the third does not change its color at all under sulphuric acid and smells more of lemor than of orange.
Who does not know the magic virtues at tributed to almond-paste? But tbe largest amount of the almond perfume of commerce comes from distilled laurel leaves and the ker nel of stone-fruit ; also from the skin of bitter almonds. The essential oil of almonds is go from the nut itself; first pressed into a cake, then moistened with salt and water; from the fermentation of this is produced the amygda in and emulsine contained in the almonds Laurel leaves and other analogous substances give the same results under the like treatment. Fourteen pounds of almond-cake yield one ounce of essential oil, which must then be diIuted with spirit to become pleasant, the conentrated essence being too powerful to be olerable. It is much used in soap, cold cream, \&c., being esteemed as a good cosmetic Mirabane is imitated oil of almonds, made from benzole (a product of tar oil), and patented by Mr. Mansield, of Weybridge, England. This mirabane was used for peruming soap; but it did not succeed, and, after a short time, the licence was withdrawn, since when miribane or, chemically speaking, nitro-benzole, has not been applied to any of the general uses of perfumery.-S. Piesse.

Science and Soap.-We refer to the fact, in another article, that the government is calling for soap. Here, it seems to us, is a are chance for Professor Gardner, the famous New England soapman, to visit Washington, assemble the officials who contract for soap, and proclaim in their ears, in his own peculiar manner, the virtues of soap and cleanliness. Uncle Sam and all his official family would be astonished to hear that there is not only virtue in soap, but also science and wit.

A remarkable pillar of light, resembling the tail of a large comet, swapt from northeast to northwest over the city of New York on the 29 th ult.

We are unable to suyply several numbers of this vol ume; therefore, when our aub criberd order wis sin
numbers and do not rceeive them promptly, they may reasoaialy anclude that we caunot supply them. J.A.S. of Miss.-There is no new work on the high pressure etcam-cu:ine rublished. Tle most completo work on the subject is "Tredgold on the Steana En
pine," a London publication and yery deo jine," a London public ation, and very dear. scription of your electric wind vane. We advise connect tho wires with the ground for safety; it will do no harm, while it will ensure confidence. Mr. Sherry of Sag Harbor, L. I., we believe, will furnish you with such a clock as you want on reasonable terms.
A. T., $o \leq$ Ill. There is no publication dev cially to type-founding in this country or in England "The Printer:", published by Heary \& Huntingdon, this city, contains considerablo information on the sub ject. Several works on printing have bcen publislied
J.,el Munsell, printer, of Albany, N. Y., has quite large library of books relating to this art., R. \& G., of Md.-There would be scarc:ly a limit $t_{\text {p }}$
the value of a motor that would bupersede steam with the value of a motor that would bupe

the economical results you mention. W. R. H., of Texas.-We ragret thin

t we cannot send you No. 52 of the last volume. We are out of that
number. A mixture of sulphur, phosphorous number. A mixture of sulphur, phosphorous an
camphor burned in anthills will generata a henvg gas, that will be likely to kill the insects
J. T., of Dal.-We advise you to put a coat, one inch
thick, of boiled pitch and asphalt cement on your leaky roof; il should be laid on hot. cont in 30 per cent of sand and should be covered with air slacked lime or marble
gravel.
gravel.
II. . . of N. Y.-A common opinion prevails that the ocean cannot ba sounded; this is a mistuke, for the Whole Atlantic has been sounded from America to
Europein latitude 500 . Thic water in your dann will How back just as far with a 100 feet diazonal breast a 50 feet straisht breast. The hight of the wall or brea L. Hat ficld, Cuyahoga Falls, Ouio, wishes pond with a manufacturer of mowing machine k nives. J. S. N., of Pa.-Common gum copal varnish will stand exposure to rains for one scason at least, and is
transparent but not white. Lisseed oil, boileddown ransparent but not white. Lisseed oill, boileddows ble transparent varnigh, which will last for two or
 S. C. of Va.-To obtnin a correct knowledge of chemistry, you should commence and study a good
elementary work and exieriment. Get Gregory's or dementary work and exieriment. Get Gregor.
Kane's elements of chemistry to commence with. B. P. R. of N. Y.-The mineral which you have sent is from Washington County is galena. If fuel is cheap nd abundant it may be profitably smelted for its lead. it contains no silver of any consequence.
W. A. L of N. Y What more infor
W.A. L, of N. Y.-What more information do you
want in regard to concrete houses than the article to which you have referred?
J. P. W of
Which you have referred?
J. P. W. of IIl.-Address Wiley \& Halsted, book-
gollera, of this city, ia reterence to a work on architectural draving.
J. W. B., of
has issued a work on brewing and distilling, which also contains information about yeast-making.
H. S., of Pa.-A depilatory powder for re
H. S., of Pa.-A depilatory powder for removing hair
can be made of flacked lina in powder three can be made of flacked line in powder, three ounces,
orpiment, half an ounce mixed with water to the consistence of cream. Apply it with a rag or brash, and allow it to remain on for five mininutes. R. W., of Mich.- Bricks glazed on the outside have
been proposed several times, and no doubt thes would been proposed several times, and no doubt they would
be excellent to prevent moisture entering from the outside.
L. . O., of Wis.-We ara not acquainted with the practic $\stackrel{\text { refer. }}{W} \underset{ }{W}$
W. H., of Ill.- Your proposed method of navigating that by makiug a splerical vessel to contain 10n,00no,000 cubic fect of air, then pumping this out, that it will "go off and up like a birl." You aleo propose to build an iron vessel 1000 fect long and 500 £ $\times \times \operatorname{tin}$ diam-
eter to carry out your ideas. If you do so, end extract the air from it by a pump, its sides will be crushed in like pasteboard, as the outside Iressure will then be 15 lbs. on the equare inch.
S. M. M.. of lowa.-The substance of your letter may be summed up in the following words: "Therc is no
general rule for determining accurately the amount of general rule for determinins accurately the amount of
friction which a steam-eugine consumes on iteelf." If all engines were made alike, one rule could be ayplied to all, not otherwise. A steam-engine can bs con-
structed which will not consume more than structed which will not consu
tieth of its power in friction.
L. K. H., of Wis -If you turn to pasc 362 No. 32 the Scientifio Agracican, you will fiod information about license laws of States which fully answerg your question. If you employ a patent process in tanniu
leather you are not obliged to stamp the date of the leather you are not obliged to ε tamp the date of the
patent on the leather. The process, and not the leather is the subject of the patent.
W. A. F., of -. There is no chance for a pa ent on your marine governor. The eame thing has been oftentimes proposed to us. We have no confidence in its
ralue ag an olverating derice,

