Scientific Ammericam.

NEW YORK, APRIL 30, 1859.
Interesting Experiments in Testing Belting. As there is a vast amount of belting employed in our manufactories, and as the expense of maintaining the belts is very great, it becomes an important question as to what is the most appropriate material, and the best form of belting for this purpose. Two leading questions enter into this estimate, viz the adhesive power and durability.
On several occasions we have presented information on this subject, and on page 357 of Vol. XII. and page 256, Vol. XIV., of the Scientific American, we described and illustrated certain experiments for testing the comparative qualities of flat leather and india-rubber belting, but have never given any information in regard to the comparative efficiency of belts of different forms. We will now detail some experiments which we witnessed a few days since at the store of J. W. Andrews \& Co., No. 67 Pine street, this city, for testing the comparative qualitios of good flat leather belting and tubular belting, made according to the patent granted to George Miller, of Providence, R. I., in 1854 and now manufactured by Miller \& Andrews, of the same place.
The apparatus used for this purpose was a horizontal frame about twelve feet long, re sembling a table without a cover. On one ond was secured a shaftin fixed supports, and on the other end a similar shaft secured in supports situated on a small frame capable of sliding on the table, so as to be drawn back to tighten up the belts by tension weights attached to it by a cord hanging over the end of the table. On each shaft was a planed flat iron pulley, and also by its side a narrow grooved iron palley. The former was twelve inches in diameter, the latter of the same diameter, but had a groove one-fourth of an inch deep, making the radius $5 \frac{7}{8}$ inches. A fat 3 -inch leather belt was placed over the two smooth pulleys, the grained side coming in contact with it, and a weight of 87 pounds was hung on the periphery of the pulley on the sliding frame. A crank on the shaft of the fixed pulley frame was then turned, when the belt slipped, and could not elevate the load. The flat belt was now thrown off, and a round ne of half an inch in diameter was then placed on the two opposite grooved pulleys. The crank was now turned as before, when the 87 pounds weight was lifted with ease to this was then added 87 pound: more, and that was also lifted, but not easily. The flat belt was now tried with 87 pounds of tension on the frame, when it again slipped; otuer 8 pounds tension were then added, and the weight of 87 pounds was lifted.
The difference of adhesive power between the round and flat belts, it will be seen by the above, is very great. With 174 pounds tension, the flat belt was onabled to lift only 87 pounds weight; with no tension on the sliding frame at all, the round belt lifted 174 pounds, which gives the latter belt four times as great adhesive power. As the tension is direct strain upon the pulley journals, it greatly increases the wear of the belt, therefore the belt which does the most work with the least tension must endure the longest.
These round belts are made by scarfing a a broad belt, and rolling it up, not spirally, lengthwise, but in a horizontal fold, so as to form a perfect round tube, with a very small central bore. Its form is stronger than that of a flat belt, and it accommodates itself snugly to the groove of the pulley, which increases the adhesiveness. A round belt of two-eighths of an inch in diameter, experience proves, is more than equal to a ene-inch flat belt, and a half-inch round belt is more than equal to a three-inch flat belt. The saving of room by the use of the tubular belts, and the narrow pulleys which are employed in
their use, are questions of economy for manufacturers. As the tension is much less on the round than the flat belt, they are much easier uncoupled from the grooved pulleys than would otherwise be supposed, and we believe these round belts will come into more general use when manufacturers and machinists become better acquainted with their advantages.
Mess

Messrs. J. W. Andrews \& Co., 67 Pine street, this city, will be happy to show the above experiments to any persons who may desire to inform themselves more on this subject.

Cutting Fence Timber.

A practical farmer in a communication to the Germantown (Pa.) Telegraph, advances a peculiar theory in regard to tho period for cutting timber intended for fences, especially for posts. The prevalent opinion in regard to the best time, is when the timber is most free from sap, and the very worst time is when it contains the most sap. This practical farmer referred to entertains the very opposite opinion. On one occasion he cut down some excellent white oak in the month of February and set it out in fence posts, and after this he cut down the same kind of timber in the month of May when it contained most freesap and set it out into posts also. The former posts lasted only six years; the latter ondured twenty-two years.
This correspondent also advocates the cutting of timber for rails about the month of May when it contains most sap. He says if imber is cut for rails when the sap is runaing, the bark then stripped off and the rails made immediately, they will last one fourth longer than if cut at any other time and have the bark left on. The inside bark of the wood is the first to decay and rot; being of a porous ature it contains air and water which carry the process of decay into the wood. When the bark is peeled off, the sap soon dries and revents decay." All experience goes to prove that the bark should always be peeled rom chestnut or other rails in order to render hem more durable; this is well known to very farmer, but it will hardly be conceded that the best time for cutting rail timber is when it contains most free sap. This is a practical question however which can only be decided by experiments, and it is one of no small importance, as a vast outlay is caused annually for repair of decayed fences.

The Nineveh Marbles.

It is related by historians that in "the days of old " there lived a famous warrior in Assyria named Ninus, who after conquering cities and provinces without number, at last founded his capital on the banks of the river Tigris, and called it Nineveh after himself. Whether this account of the origin of this city is true, or not one thing is certain, the Bible informs us that in the days of Jonab, the prophet of Israel, Nineveh was a great city, containing a population of 120,000 persons who could not distinguish their right hand from thair left-young children-which would make tho entire number of its inhabitants be about 600,000 , the infants being about onefifth of the whole. Strabo states that it was larger than Babylon, that its circumference was 47 miles, and that it was surrounded with walls 100 feet high, and so broad that three chariots could drive upon them abreast. It was distinguished for its riches, the grandeur of its temples and palaces, and was altogether fora period the most famous city in the whole world. It stood several sieges and was taken a number of times before the christian era; still it was a place of much importance down to the seventh century (A. D.) when it was completely destroyed by the Saracens, and left a huge heap of ruins. In the course of centuries the soil grew over these ruins, and Nineveh became outwardly but an extended grassy mound on which the Arab shepherd fed his flock, and pitched his tent in perfectignorance of what was beneath his
foct. But the finger of God was upon it, for guide a the record of the Scriptures for his for atid discovered Nineveh-Layard-song ago, and exhumed from its subterrænean courts some of the most remarkable works of ancient art yet discovered. Several of thes are now in our own city, and have been pre sented by James Lenox, Esq., to the Historical Society of New York. They consisis of thirteen slabs of marble, on which ar sculptured winged figures of men, with long hair and beards, clad in robes and sandal and some of them have armlets, bracelets an swords. The figures are more symmetrical and better drawn than those in the Egyptian temples. One of them has the head of an eagle instead of that of a man, and carries something that resembles a basket containing mystic offerings. Another has a shallow bowl in one hand and a bow in the other The figures are surrounded with broad ornamental borders in which the honeysuckle i frequently sculptured, and across the center of each slab runs an inscription in small characters of about twenty-five lines. Most the stones have been broken into two or more pieces but have been skillfully put together again. In other respects they are well pre served. None of our learned men, we under stand can yet decipher the hieroglyphics on these tablets, nor do they know the meaning of the figures sculptured upon them. That they have a meaning, no one can doubt, an it is to be hoped they will be studied by som plodding student until a key is found to un lock the whole mystery. The works of Raw linson and Layard will help them out of the difficulty.

Grooved Crank Motion.

Numerous are the devices that have been invented as substitutes for the crank, for the purpose of converting rectilineal reciprocatin into rotary motion and vice versa. The accompanying figure does not exhibit a con trivance for this purpose, but it belongs to this class of devices. We present it because it is sent to us almost every month by some amateur in mochanics, as a new invention whereas it is more than half a century old at least, and we have had a model of it in our possession for eleven gears. The object of this device is to give a double motion during each revolution, and which some have sup posed would be very well adapted for saw mills.
A is the pitman and BC are two \times grooves in the face of a plane wheel or pulley. The pitman is connected to the wheel by pins, E D, at two different points, and these are se cured to slides e d, in the cross grooves. The dotted lines show different positions of th slides, grooves and pitman, and how the slide move in the grooves according to the positions which they assume as the wheel revolve giving to the pitman its double stroke during ach revolution.
The great amount of friction involved by the slides moving in their grooves, renders this device but ill-adapted for the economical operation of machinery.

In almost all our Pire Engines.
rapidly supers our cities steam power i tinguishment of hand labor in the ex ture of enterprise our western cities hav taken the lead. Cincinnati, Chicago and St. Louis have manifested a most commendable amount of good sense in the adoption of steam fire-engines, as a general means of steam fire-engines, as a grom destructive fires. The report of the Chief Engineer of the Fire Department of the latter city, lately published, presents in a very striking light the advantages of steam over hand fire-engines. The expense of the department for maintaining the steam-en gines for one year was $\$ 55,000$; for the hand engines, $\$ 30,000$. But on the other hand the efficiency of the steam machines is repre sented by the small amount of property destroyed in the proportion of $\$ 211,623$ to $\$ 1,300,150$, under the old regime, a saving of more than one million of dollars' worth of property. Our own city is somewhat behind the age on this question; perhaps our firemen consider themselves such high-pressure boiler bursters as not to require the assistance of steam arms ; but if they do not throw off al such notions they will soon find themselve distanced by their Brooklyn brethren. In th Eastern District of the latter city, one of th fire companies has just had a splendid steam machine huilt, which in a number of respects differs from any other that has get been brought before the public. It consists of on of Guild \& Garrison's powerful steam pump (illustrated on page 105, Vol. XII., Scienti fic American), fitted upon a carriage wit a compact vertical tubular boiler, and is th first of the kind which has hitherto been specially applisd to such purposes. It is ex coedingly compact, and weighs about one third less than other steam fire-engines of the same capacity. It is of one foot bore and stroke of steam cylinder, and has an 8 -inch pump. It has no water-box, and the boiler is fed from the discharge or air-chamber by a small tube-the pressure being sufficient for this purpose, without an extra feed pump The parts of it, therefore, are few in numbe and several trials which have been mada with it have given perfect satisfaction as to the rapidity with which the steam can b raised, and the amount of water discharged in a given time. As direct-acting steam pumps are more simple than rotative engines, this new adaptation of them is a question of no ordinary interest.
At the recent conflagration in Boston, by which the Suffolk Flour Mills were destroyed, which the Suffolk Flour Mills were destroyed,
the "Eclipse," a steam fire-engine, manuthe "Eclipse," a steam fire-engine, manu-
factured by Messrs. Silsby, Mynderse \& Co. Seneca Falls, N. Y., did good execution, and if the other engine which was brought to the work had operated withequal success, the fire would probably have been extinguished with out so great a loss as occurred.

The American Home Garden.
"To those young men and women of the Union who would make their present or pro spective homes rich with the comforts, brigh with the beauties, and fragrant with the sweets that a garden may be made to yield, Mr. Alexander Watson, of this city, dedicates a very neat and useful volume bearing the above title, of which volume Messrs. Harper \& Brothers are the publishers. A home garden, however small, it not only a source of much pleasure, but of some profit also. It is greatly to be lamented that those industrious mechanics and laborers in our cities, who above all other classes would be most benefited with woodbine-clothed cottages and smiling gardens, are just the very persons who are most signally deprived of such enjoyments. A home-garden leads to the elevation of our higher nature-the cultivation of a purer taste, and a higher appreciation of the beauiful in sight and foeling. The pleasure derived from the cultivation of flowers and fruits is exquisite and exhilerating. A sympathy grows up in the human heart for all objects of nature on which care has been be-

