THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.

scientific american,

 At No. 37 Park-row (Park Building), New York, BY MUNN \& CO.o. d. munn, s. h. wales, A. e. beach.

 Agents emplosed.

Weather Prediction.

Although we have no faith in the predictions of Thomas, the almanac maker, or any of the weather prophet fraternity, we will publish the information of a correspondent -J. Royal, of White Rock, Ill.-who professes to be able to foretell the weather one year in advance for any locality where there is an almanac calculated. Here is the prophesy:"The first half of April will be wet, the last half fair ; the first week in May will be wet, the balance, fair ; the first half of June will be fair, the last half changeable; July will begin and end with a few days of changeable weather leaving the middle of the month dry; August will have a great many wet days; September will set in fair, but the balance of the month will be changeable, the last part being wettest ; October, changeable, gradually increasing to wetness; November, like the preceding, only commencing fairer and ending wetter; December, fair weather." On this, we are told we may rely, with the exception of September, where there has " to be added the extra stormy weather caused by the sun cossing the line" This truly depends on the prevailing winds at the time; if the winds be southerly, the month will be wet; if northerly it will be as dry as if the sun were at his extreme distance from the line.

To Waterproof Fabrics.

Take a pound of glue and one pound of tallow bar soap and dissolve them in f ve gallons of water. Now bring the water to the boiling point, and add carefully and slowly one and a half pounds of alum. When this is all dissolved, cool down the liquid to about 130° Fah. and plunge the articles to be prepared into it, then hang them up to dry. When they have become quite dry, they should be washed in soft water and dried a second time. Such articles should not be used for wearing apparel, excepting for loose tunics to be put on in rainy weather. Any person may thus prepare at little expense a coarse cloth water-proof fabric.

Breaks in Levees.

In a paper recently read before the New Orleans Academy of Science, by Dr. R. Cartwright, he attributes the breaks in the levees of that city to the burrowing of crawfish. He says these animals build their houses near the base of the levee and next the river, for the convenience of catching fish, shrimps, \&c. When the water comes up against it, they burrow through the levee, andgo on the other side, to prevent being drowned. The most effectual method to drive them away is to throw on the base of the levee the crushed stalks of the sugar cane, called bagasse.

BURNET AND BRODERICK'S SEWING MACHINE.

The sewing machine is now a peice of mechanism of such extended atility and application, that every contribution to its improvement or simplification is to be regarded with due attention and respect, and each invention which has for its object the more perfect action and the production of better work deserves to be examined impartially and with care.
The illustrations of the present article how a perspective view, Fig. 1, and a front nd view, Fig 2 of a new rewing machine nd Sy S. Surnet and W. Broderick invented by S. S. Bunt and W. Broderick, f Chicago, Ill., and patented November 30th, 1858, in following the description of which, we ask the reader to remember the above remark.
Upon the table or bed, A, a frame, B, and attached arm, B', is secured. These carry the feed motion and needle and their operating parts. Through the top of B , a horizontal bar is placed carrying a belt wheel, C, and.two crankwheels, $\mathrm{D} \mathrm{D}^{\prime}$, the crank wheel D, serving also as a cam by a small depres , serving so rm E w arm, E, which as D is rotated gives a back and forth motion to the rocker, F, that is attached to B^{\prime} by a pin, a, and F communicates its motion through a link, G, to the needle carrier, H, and needle, I. H moves in guides, T. The motion of the needle is thus obtained by means the most simple and effective.
To D^{\prime} is secured a link, J, that passing through a slot in A, operates the rocker, K , suspended by the bearing, V, under A, and K gives the proper motion to anether link, L , that moves the slide, M, in which the shuttle, N , is placed; the shuttle moving in. a race-way, h. By these means the shuttle motion is obtained.
The thread coming off the spool, 0 , passes between two thin flat metal plates in P, and a slide on them brings them closer together, or allows them to be further apart to regulate the tension; from P it passes through a small loop, l, thence through an eye or forked wire on G, where the teusion is properly raised at different portions of the stitch by a spiral spring, after which it passes to the needle being guided on the way by the eyes, $l^{\prime} l^{\prime \prime}$.

The feed motion is obtained in the follow ing manner ; the feed bar, R, is pivoted to the frame at c, and it is moved by a small cam, b, on F, which forces it forward, and by means of a feed plate, S, the serrated end o which, i, moves the cloth. The feed bar and plate are forced back by the spring, X . In S , is a slot that works over a pin in an arm,

d, that can be lengthened or shortened by th double screw, e, a little nut on the bottom of which prevents its moving by the motion of the machine, and a spring, f, on the upper end of the device elevates the portion, i, from the cloth, as S is being drawn back, and a the same time the end of g, which passes ove the indentation, h, on D , allows this to be done ; when i is pushing the cloth forward or is at rest, the lever, g, keeps it in contact with the cloth, by being all the while on the largest diameter of D. The plates, j, serve to
cover up the shuttle and race. The whol machine is operated by a band, U, passing over the pulley, C. A perfect loop is forme by this machine, and the shuttle is allowed time to pass through the loop before it is drawn tight, and thereby accomplishes the interlocking of the two threads, and the drawing of the stitch tight upon the cloth Every part is under complete control, the length of feed being regulated by screw, W and the machine operates quietly and with great precision and regularity.
Any further information can be obtained by addressing Burnet, Broderick \& Co., Chi cago, Ill.

Animal and Vegetable Life

There is nothing short of revelation that more beautifully or satisfactorily proves the existence of an Almighty mind than the fewness and simplicity of the ultimate element of animal and vegetable life. Thus, there are but four elementary principles essentially necessary, and but six generally employed, to form every variety of organic life; nitro gen, carbon, oxygen, and hydrogen are the bases, to which sulphur and phosphorus may be considered supplementary. With these, infinitely varied in their atomic proportions, are built up not only the whole animal king dom, but also every variety of the vegetable world-from wheat, the "staff of life," to the poison of the deadly Upas tree. It i also worthy of remark that these four elemental principles are those also of which both ai and water are composed, so that air and water may be considered in truth and fact as being the original elements of organic life.Dr. Toulmin.

Gun Boats.
About three weeks since (page 237) we directed public attention to the above subject, in a brief review of Chief-Engineer Isherwood's work on the British gun-boats. Since that period much discussion has taken place in the daily papers in reference to the utility of such war vessels. The brave old Commodore Stewart, in a letter of the 27 th ult. to the National Intelligencer, expresses a favorable opinion of their qualities for the siege of fortifications. He says:-"They will prove of great importance under the power of steam, in any future operations against ports and permanent batteries.

Peculiar Recording Thermometer

The following is the description of a very simple recording thermometer, used by J. Gautlett-a farmer of Middlesborough-on Trent, England-and which is stated to be very correct in operation. It consists of a long tube of thin sheet zinc, containing a loose, dry, wooden rod. Thetwo are fixed at one end only. The relative greater expansion of the zinc, by an increase of temperature causes it to protrude beyond the wooden rod, and vice versa. This varying motion of the inc is communicated by a lever to a pencil hich on a rerolving opliperan taining a strip of paper, which is wound off taining a strip of paper, which
every minute by clockwork.

Measures have been taken to light the city of Honolulu with gas, and it is expected that the works will be completed for this purpose in the course of four or five months a farthest.

Sicutific Ammricant.

CThe followers of tuis press is operated by means of
a rotating platform having a helical ledge or flanch on its upper surface, and placed below the body of the press. The follower has two levers attached to its
under side, the lower ends of the levers baring under side, the lower ends of the levers bcaring
against blocks which are placed on two helical ledges or rails, and we made to operate the follower when in the act of pressing with a progressive or gradually increasing power as the platform is rotated.]
 structed and operated in the manner and for the pur-
peses described.

 path of a vertical circle, and over the platf orm in the the
path of a horizontal cirele, substantislly as set forth.

tion, by the nse of the stops affixed to the disks, or im
aginary crane
h clam that portion of the hammer shaft, Q

 and set forth. h . arrangement of placing a galvanized
Fourtion
iron rim, or its equivalent on the outside, and over the
 the auper edge of the walls, for the purpose of slap-
ing and orrenthenin the upper part of the ooffin, and
at he same time furpishing a means of securing the

 Cuurivaron-John Smally, of Bound Brook, N. J.
I do not claim, broadly, hanyung the main wheels of
 cultivarators
cror daim a central lever, for operating the
crank ad axle, or the plow-formed teeth, or any other

 chine at pleasure in the manner and for the purpose
set forth and explained. Sprivg BEDsrind-C. F. Spencer, of Rochester, N

 theref ore, I do not clamm, broadly, the use of spring

Smut MuL_G. H. Starbuck and D. D. Gilman, of
Troy. N. Y.: We claim, frst, The combination of the two scouring plates, a a a, placed one a above the other,
withtheir roughened ob burred surfacees toward each with their roughened or burred surfaces towar, eacor
other,
oin combobination with the funneling plater,, for
 confinie ourselves to any number of scourers for a ma
chinee.
Second, The ver tical cylindrical opening, as show
 all litht hi inpur titie pand
the discharge of grain.

 for tal purposa set orth.
clampocanm the omployment of the screw cap, , for
fied.

 to the wings or bades Cor and arranged to operate
and or the purpose est forth.
Third, The combintion of the lateral adjustable
hoes, m, share A, adiustable wings or blades, C C C
 for joint operat,
pose set forth.
in this invention, arranged relatively with a drivin or support wheel, in order to facilitate the manipula control of the attendant. The invention allo consists in the use of ad justable rotating scrapers attached to the Crebset for Henting Barrels-John S. Thompb and Mane arrangement of the annular bed, D . at the
clase of the base of the apparatus, and a above the escape, finue, C , to
receive and upport he barrel, as and for the purpose receive and support
shown and described.
[This invention consists in having an upright cy innder or drum attached to an ordinary box stove, th tove and drum being provided with a return flue, an
the stove with an annular bed, the whole being ar ranged so that the barrel or cask may be properly heated, and the staves rendered sufficiently pliable to be bent in the proper or desired form.

 vinratiog plate, ${ }^{\text {g }}$, with serrated finages, h^{\prime}, attu che
and arranged to operate as and for the purpose se
torth.
Stcond. The inclined adjustable gerect box. D, pro-
vided with a share, E, and spur, if at its lover end, in combination with the endles8 chain of car7icrs, F, ar
raneed to operat for the purpose set forth
Third,
leveling share, N , inclition of the wed eradicator,

 [This invention consists in the use of an endles carrier allached to an iachaed screen, a weed eradica vided with screens, the whole of these parts being mounted on wheels and used in connection with
peculiar guiding device, whereby potatoes may be du from the hill or drill, thoroughly separated from dir and also assortea, the large from the small, and place

MAndoratrar of Wood Sorews-N. G. Thom, of

 long used upon augers, biinhfete, Bc. and 1 theref or
do not claim that feature as any part of $m y$ preeent inBut I claim, as a new manuf acture, the described
Food screw, the characteristic feature of which con

 the ait Iclaim the bow pieces, be, connected with the

as ect frrth.
I further claim, in connection with the saddle-tree formed as above, the crupper loon. j , attached to the
cantel bu-p-ineee, by means of the plate, i , substan
tially as and for the purpose specified.

This tree is formed all of metal, cast in one piece Iy of the saddlematerials being fastened to it. In fact it is in every respect as good as the woodes one an in many much superior.]

Harvirgres-S. W. Thler, of Greewich, N. Y.
clinin iving such a shape to the portiong, a and h. the finger bar, and to the flanged portions or heads
the fingerg d d that the mame set of tivet w ill unit
all the said

MAcarne For Rolling Wheri Tires - Nathan Wain of sat of reducing-rollers, A B A A series of adjuatabl
carrying rollers, d d, d, d. or their equivalents. and arrame or holder, G, gupported so so to be capable or
risingupward with the
the diameter of the ine increase during the process of rilling the tire, and
having the raid carrying rollers trrange and
adjustable with respect to it and the reducing rollers in manner substantially as specified.
 o that he clods that wedee bet ween the flats will
carried up, and then dropped, and then broken within the $\begin{aligned} & \text { heel, as shown and described }\end{aligned}$
[A rotating slatted cylinder constructed in a peculia
manner is employed by this inventor to accomplish the desired end, namely, the crushing of clodsand the pul verization of the soil.]

 of Wheel gear arrangement, when considered by itself.
But I claim the arrangement of using in addition

 When set on the spindle, a, of the gerew w.
substantially asand for the purpose set forth. Harverting Maonine-William Webber Jr., and
John Webber or Rockton. Ill.: We claim operatiog

manner set forth.

Sroves-J. Whitehead, of South Paris, Me. I I I claim
the combination with the fire-chamber described and With an oven having hollow wallo filled in with non
conducting material, of a remorable fire chamber cas ng., Which has hollow walls, filled in with a non-con-
ductingmaterial, and is in shape, externally, nearly
the counterpart of the fire.chamber, and sere chaiug the whole of the expose portion of the fir
chater and at the same time allows access the the holes in the to of the fire chamber, and tote fefuel doo
thereof, substantially as and for the purpose set forth Flr-Trar-Eligha D. Blakeman, (assigar. to Jacob Lebanon, N. Y. I claim the combination and arrange.
ment of the poison cups, $\begin{aligned} & \text { and n, with the conical } \\ & \text { chamber, } B, \text { and bed-plate, }\end{aligned}$, substantially as and for
Maogine for Rolurvg Izon-Heary B. Comer, (as

I Foot-Sorarre-W. L. William s, of Now York Clity

 Jnd combined and arranged to operate, substantially
and for the purpose set forth. . [A series of brushes are combined with a scraper
plate and so arranged that the action of the foot or shoe on the scraper, in cleaning the dirt from the sole will actuate the brushes in such a way that they will
come in contact with, and clean or brush off the dir come in contact with, and clean or brush off
from the sides of the shoe, and all around it.]

CThis invention relates to an improve:ment in that rived from the block by a knife placed in a reolprocat ing gate. The frame in which the gate works is give an intermittingly oscillating movement simultane.ous-
Iy with the forward feed movement of the bolt, in such manoer that the knife, as it descende, will have io cuttingplanein an oblique :osition with the edge of theboltand consecutively in reverse positions, bo that
the shingles will be cut in tayler formand in a smooti the shingles will be c

 hratiog ty
deberibof
Second.
 forth

 ating substantially as 8.t.t forth.
Fiftll, Attaching the feeding-plate, f, as described,
 faces of f and X. Tustable guide, 1 , constrncted and ar
Sixth, The and
ranged shbtantiall ua and for the purose deacribed.
Sevent

 the purposes specified.
macuine for Preparing Moldinge for Piotur
 cribed, in com
pose specified.

 [Theseretorts are designed for coal oil. The nven tion consists, firstly, in certain means of protecting th hollow journalagainst the entrance of lumps of coal,
and in a great measure againat tho entrance of dust and in a breat measure the agitation of the charges in the retor or the hollow journal of the retort, in combinatio with a water box whereby the connection of the hollo journal with the hydraulic nain, or its equivalent, i
kept packed, and the journal at the same time lubri ept packed, and the journal at he eame time lubri method of apulyin a steam-pipe for the admission of teaminto and among the charge during the distilling process. It also consists in connecting a water injec
tion pipe with the pipe which conducts away the tion pipe with the pipe which conducts away the
liquid and vaporfrom the retort and hydraulic main ing water among the vapor in the pipe to assist in it condenaation.]

 and gases, and other risis constructed,
setf orth and for the purpose specifed.

it will be seen will accommodate itself by the float, D , to the motion of the water in the
boiler caused by the rocking of the vessel, boiler caused by the rocking of the vessel,

and should any sudden lurch occur, which leaves the upper hemisphere of ball E , entirely | leaves the upper hemisphere of ball E, entirely | ive to the |
| :--- | :--- |
| exposed to the steam, the contained water has | lurch occur, |

WASHINGTON'S BLOW-OFF FOR BOILERS

The device is remarkably simple; and, thoroughly, efficiently, and perfectly per judging from the testimonials we have seen from the engineers of steamships which have it fitted in their boilers, and from the Inspector of Boilers for the Baltimore district, it very

Sawtell's Spinning Flyer.
The accompanying figures represent an improvement in spinning flyers, invented by J. N. Sawtell ; Fig. 1 is a side elevation and Fig. 2 a plan view of the nozzle. In form it is similar to the common flyer, but in construction quite different.
A is the bronze shoulder of the nozzle and B B are the arms of the flyer. The bronze part extends upwards, forming the tube, A^{\prime} and C is the hardened iron capping or colla on the neck.

We will now explain wherein this flye differs from others, and point out its advan tages. In making the common flyer, the neck or nozzle is brazed to the arms or wires, B B, but this flyer is constructed by casting the nozzle (which is bronze) on the arms and thus uniting them together in a more permament and superior manner. By the old way of brazing the nozzle and arms, the wires are highly heated, which injures their elasticity and strength, and by the refinishing which they require afterwards they are reduced in
size which renders them weaker still. One size which renders them weaker still. One
of the arms is also liable to be reduced somewhat smaller than the other which thus tends to throw the flyer out of balance, and render the operation defective. The brazing is also sometimes imperfect and the arms, as a consequence, soon become loose; and when a nozzle becomes much worn, the cost of re-
first to be blown out before the steam can es cape and by that time the ship will have right ed itself, and if not steadied then, will refill E with water which will again act as a prevent ive to the escape of steam should a similar

R forms the , was patented Jan. 25, 1859, and any furthe information may be obtained by addressing he inventor as above.
pairing it is so great as to render this operation inexpedient.
In constructing this improved flyer by casting the bronze nozzle on the arms, B B the two metals are permanently united, yet this is done in such a manner that the wires are not overheated, and thereby not sof tened, nor do they require to be reduced in size after wards, but retain all their original stiffness, strength and elasticity; they are therefore not liable to work loose, nor bethrown out of balance ; and should the hardened capping, C, become worn, it can be renewed at a smal cost, and the whole nozzle rendered as good as when new
These flyers have now been in operation or nearly three years and have given grea satisfaction. They are manufactured by the Ames Manufacturing Company at Chicopee, Mass., who will attend to communications addressed to them on the subject. It was patented Feb. 17, 1857. For more informa tion see advertisement on another page.

Lawton \& Bligs' Hose Coupling.

A swivel joint for hose-one that would admit of turning, and that could be easily put together-has long been wanted. Here it is. It is the invention of R. B. Lawton and W. H. Bliss, of Newport, R. I., and was patented Feb. 22, 1859. Our illustration fully shows the invention, the coupling being seen in section.
A A^{\prime} are the ends of the two hose provided with caps, B B', by which they are attached to their respective metallic rings or thimbles, $c d$, the one, c, fitting into the other, d, and pressing against a rubber packing ring, f, in d which renders the joint water-tight. Around c a groove, e, is made, and in d there is a hole on which a hollow screw is fitted provided with a screw-cap, h, through h a pin, i, projects that fits into the groovein the top of the roller, g, that is conical at its end and fits into the groove, e, thus securing the thimbles, $c d$, together and allowing one to move round the other with perfect freedom, but at the same time preventing them coming apart. This roller being conically shaped and the groove having inclined sides, the pressure of g upon the side of e will always tend to keep c close
od, and thus compensate for any wear by the simple act of connecting them together. A simpler and more efficient hose coupling it would seem impossible to devise, especially when so many ends are attained by the sam device. Any person desirous of knowing more concerning it, in a business or othe point of view, should address W. H. Bliss, a Newport, R. I.

Firing of Locomotives.

In the saving of wear and tear, and in the sconomy of fuel and oil in runninglocomotives, a very great deal depends upon the engineer This is very clearly set forth in tie recen report of R. A. Wilder, Esq., Superintenden of the Minehill and Schuylkill Haven Rail road published in the Miner's Journal of Pottevile P. The pinciple feture of thi e of thi report uccessful use of anthracite coal for fue It is used on the engines running on thi road, and has been found much cheaper than wood at two dollars per cord. The engines are similar to those in which wood is em ployed for fuel, excepting that the fire-box is larger in area, but not quite so deep. An en gine of 30 tons will take a train of 140 cars, the summit of the moustain and retur loaded-a distance of 65 miles, consumin our tol the tal four tons of coal-the total rise in the road being 900 feet. The coal used is all broken ith a hammer, as it has been observed tha when broken by rollers, although the wor is done more rapidly, it does not ignite s readily, on account of the sharp angles being broken off. The fire in the furnace, is neve more than six or eight inches deep, and a experienced fireman never throws in to much fresh coal at once; great care and skil are required in firing-in fact most of th success of coal-burning locomotives depend on this operation. A fireman has been known to burn out a set of grate-bars in one day while another using the same coal, and raising as much steam, has preserved a se bars for several months. The rapid de truction of fire-boxes, under the use of coal as fuel, bas retarded its introduction as a substitute for wood. As the bottom parts of the fire-box plates are subject to the mos rapid destruction; it has been uecessary to move the entire box to replace the injured arte The ben eing to the mod wioh the ohe bave to we On ether. On the above road, the lower parts of the fire sheets which are injured are only cut away, not the entire fire-box, and a saving of nine-tenths of the usual cost has been effected. By forming the fire-boxes with a set of lower fire-plates, joined to the upper portion above the fire surface by a horizontal seam, these could be easily removed, when burned out, with but little expense in comparison with that now incurred, according to the with bo fros g much prejudiced against coal when they first commenced its use, but now they prefer to work on coal-burners rather than those in which wood is employed. Engines which use wood require to stop frequently to obtain a supply of fuel; a tender full of coals will last an entire day. In Pennsylvania, where good oak wood can be obtained for two dollars and a quarter per cord, coal is found to be cheaper, and ten years experience on the above rairroad has established the superiority of coal over every other kind of fuel. Common locomo tives with large fire-boxes can be altered with very little expense, to burn anthracite all that is required for their success is carefu firing-no large lumps being used, and a thin fire kept up

Cheap Gas.-In the city of Dublin, Ire land, a new gas company supplies good coal gas at 80 cents per 1000 cubic feet, and no rent charged for meters. This is cer tainly very cheap gas in such a city, when it is considered that all the coal used is imported from England.

