Sicutific Amcricam.

Science and Ant.

Fixing Challs Dra wings
A new method of fixing chalk drawings has $b \in e n$ communicated to the Academy of Sciences in Paris by M. Ortlieb. A chalk drawing cannot be covered with gum by a brush, because the action would remove the sketch. The new method consists in placing a very thin sheet of bibulous paper on the drawing, then passing a brush containing the gum or glutin solution over this. The glutinous matter penetrates through the sheet, and produces the desired effect, when the bibulous paper may be carefully lifted off. Another method superior to this consists in executing the chalk drawings on thick unsized paper like that used for copperplate printing, then applying the solution of gum to the back of the sheet. A sufficient quantity will pass through to protect the chalk after it becomes dry. The silicate of potash answers well for this purpose as a substitute for gum and isinglass.

Aurilerons or Gold Quartz.
At a period not very remote, the idea was prevaient among geologists that gold quartz decreased in richness as the veins descended, until at about sixty feet deep they ceased to be fit for profitable working. If this theory were true, it would not be difficult to calculate the duration of quartz-mining in any country-it would soon cease to be profitable. We learn from the Melbourne (Australia) Mining Journal that this theorg is untenable, and that it has been abandoned by Sir Roderick Murchison and by Mr. Selwin-the government geologist of that colony. It seems that certain commissioners-reputed to be excellent geologists and metallurgiste-deputied by the government, had repoited that it was injudicious to erect expensive and permanent buildings for quartz-mining, because of the poverty of deep quartz veins; hence quart-minis countenanced in Asira recent period, and not until the practice of quartz-miners had disproved the hypothesis of superficial British authorities. In North Carolina and California quartz veins several hundred feet deep are worked profitably ; and there seems to be very little difference, if any, in the richness of the "lode" as they descend. About two hundred quartz mills are now in operation in Australia, and the number is rapidly increasing. The Mining Journal states that the crushers heretofore used in that colony have not been mads of good materials. Some new California machines have been introduced; these are expected to give more satisfaction.

Improved Secd Planter.
The seed planter which forms the subject of our illustration is very simple and easily constructed, and plants seed with great regularity, the planting device consuming but littlepower.
Our illustrations show, in Fig. 1 a perspec tive view of the whole machine, and in Fig 2 a section of the seed-box and slide.
A is the shaft-pole attached to a crossbeam or strong axle, B, which is supported by two wheels, C, each of them carrying two cams, D. On these rest the ends of a weighted bar, F , which is raised by the cams and falls by its own gravity. In falling it depresses the rocker levers, F , and throws out the levers, F^{\prime}, that being connected with the link, G, operate the seed-slide, d, throwing its cavity with contained seed under the brush, g, of the seed-box, H , when it can discharge the seed through the slot in the back part of the peice, N , by which and the bars, O , the planter is attached to the framing. Each planter has a share, I, and immediately after follows a covering wheel, J, mounted on a jointed peice, K, which can accommodate itself to the level of the ground. This bar, K, is kept in posi-
tion by bars, P , and standards, L^{\prime}, that are ${ }^{\text {when }}$ whe machine is passing from one fiel fastened to the cross-roller, L, so that it is to another, or not planting. The weighted free to move in its supports and in the at-
tachments of the links, $L^{\prime \prime}$, that connect L with the main frame. This roller has sacured the chains, Q, that loop around it and passing to it three chains, M , the other ends of which over pulleys, a, in the upper frame, T , are are connected with the planters, H , so that by secured to the lever, R ; this being pulled out turning L they can be lifted out of the way by its handle it moves upon its center, b, and

DRAKE'S SEED PLANTER.

being held in proper position by the dog, or ple and, at the sametime, strong aud efficien catch, S , the weighted bar is kopt out of the The inventor and patentec is Nathanie way of the cams, D. A seed slide provided with a cut-off as well as well as slide may also be applied if desircd, but the form we have engraved is, as we said before, cheapand simo give any further information. It is the sub ject of several patents, the last of which is dated Dec. 14th, 1858

This is an invention for keeping the win dow in any position in the sash, and is very simple and efficient. Fig. 1 is a view of the window-frame with it attached, Fig. 2 shows the fastening detached, and Fig. 3 a view of The window-rail
The window-rail, A , is mortised to receive
the fastening. The plate, B , of the fastening has a catch, f, at its upper end, which enters has a catch, f, at its upper end, which enters
a suita ble notch or mortise in the windowa suitable notch or mortise in the window-
frame when the sash is down, by which means frame when the sash is down, by which means
the window is secured, so that it cannot be opened upon the outside, the catch is forced into its mortise by the spring, g. Through an ear, h, projecting from the inner side of the plate, B, passes the shank, m, into a hole, i, in which passes the end of the lever, k, by which the fastening is operated. The shank, m, has near its upper end notches or bearings, which carry the shaft of the fastening roll, C. This roll is held in its bearings by a plate, D, the lower end, C, of which enters the top end of a spiral spring, E, which encir cles the sbank, m. At its upper end the plate, D, being forced up by the spring, E, presses against the roll, C , and forcesit into the position with respect to the shank.
The spring, E, also performs the office of forcing the roll, C , up against the inclined surface, d, of the mortise in the sash rail The plate, B , is confined loosely to the sash rail by a screw, p, so that it shall be allowed to move sufficiently to and from the windowframe, to allow the catch, f, to be withdrawn from its mortise when the sash is to be raised, which is done by raising the handle or lever, k, and thereby depressing the roller, C, away from the incline, d, the pressure of the spring, E , upon the ear, h, throws back the plate, B , and withdraws the catch, f; the sash may then be raised, and when the lever, k, is set free, the roll is forced up into the position seen in Fig. 1; and if now the weight of the sash be left free, the roll, C,
will roll slightly, and bind between the win-
dow-frame and the incline, d, by which mean the further descent of the sash is prevented. The inventor is Turner Williams, of 138 Broadway, Providence, R. I., and he pat ented it October 26, 1858. He will furnish any information upon being addressed as above. A specimen can be seen at the agents, New England Butt Co., No. 30 Platt st., New York.

A Word to our Baltimore Subscribers We are receiving many letters from Baltimore asserting that the writers have been ob taining the Scientific American from Mr E. C. Simes for the past few years, but that latterly they cannot get the paper, and hence they ask us to supply them with such num bers as they have not received. We wish our patrons everywhere to distinctly understand that we are not accountable for the remissness of news-agents who sell the Scientific American, as most of them are unknown to us. All agents out of New York, who supply our journal, purchase it by the hundred copies per week from newspaper dealers in this city, to whom we sell it by the thousand copies from our counter. After this explanation, it mus be apparent to all who receive their papers from news-agents that the publishers of the Scientific American are not accountable for the actions of agents; if single purchaser fail to get their copies regularly, they mus inform the persons who have hitherto directly supplied them, and not us.
News-agents throughout the country can be supplied with the Scientific American regularly by addressing any of the wholesale news-dealers in this city; and none need make the excuse to their customers that they caunot get the paper regularly, if they pay for it.
he paper paper punctually at Taylor's book and periodical store, and probably by othe equally reliable dealers in other parts of that city.

INVENTORS, MLL WRIGHTS FARMERS and ManUFACTURERS.
FOUIRTEENTH YEAIL
prospectus of the
SCIENTIFIC AMERICAN.
This valuable and widely circulated journal entered pon it FOURTEENTH YEAR on the 11th of Sep. mber.
Itis an Illustrated Periodical, devoted to the promul al and ioformation relating to the various MecananPATENTB, Inventiona, Enainirgrig Mill Wobry and 1 intereste which the light of Praotioal sciencoz is alculated to advance.
All the most valuab
All the most valuable paterted diecoveries are deventiona described in ite 1ssues, ,o that, as respecte pertory, where the inventormay learn what has been dand before him in thesame field which he ls exploring, is own achievementa.
Reports of A meata. Reports of American Patente granted are aloo pubPatent Claims. These Patent Claims are furnished from the Patent Office Records extressly for this paper, and publighed in the SCIENTIFIC AMLILRICAN Mechanics, Inventors, Encine
Mechanics, Invencore, Engineers. Chemista, Manu. of life, will find the SCIENTIFIC AMERICAN to be of great value in their respective callings. Ite counseid and suggeetions will save them hundreds of dollars an nually, besides affording them a continual source of eatimate.
TERMS OFSUBSCRIPTION-Two Dollars a Year, TERMS OFSUBSCRIPTION-
or One Doll arfor Six Mopths.
CLUB RAT ES.

