Simitit

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND 0THER IMPROVEMENTS.
VOL. XIV.

scientific american,
 puslished weerly
 At No. 37 Park.row (Park Building), New York, EY MUNN \& CO.
 o. d. munn, S. h. wales, A. e. beach.

 Ice Phenomena Explained.
have received a letter from Mr. J. W. Norcross, of South Bay, Oneida Lake, N. Y., in reference to the ice phenomena described on page 177, present volume of the Scientific American, as having been witnessed on Rice Lake, C. W., by Mr. Dumble. We have not space for the entire communication of our correspondent, but will endeavor to present its substance. He las had excellent opportunities during this changeable winter for observing the effects of varying temperatures upon the ice. He anchored a small stuamboat in Oneida Lake, and when the water had frozen to tbout four inches in thickness, a deep fissure appeared passing near and in direct line with theboat, extending for several miles. This inssure has boon examined daily, and has formed a perfect indicator of the ice movements. Soon after the lake was frozen over, there came a thaw, and the ice moved two feet by expansionabout ten times more in amount than that of any contraction which has taten place Contraction has always been sudden almos instantaneously, and hasusually taken place very soon after the surface water began freez ing; whenever the whole surface of the wate was frozen, contraction ceased. Expansion of the ice has always been slow, and has continued as long as the thermometer stood above the freezing point. Expansion never has taken place except when there was surfuce water exposed; noue has taken place on Oneida Lake by the simple beat of the sun, when the atmosphere was below freering temperature. Mr. Dumble, in his observations, appears to attribute such phenomena to wrong causes. The following are those which produce such effects, according to the observations of Captain Norcross :-
" The water in freezing leaves innumerable vertical seams in the ice. When it commences thawing, these open, the water enters them, and from their inclined shape it acts upon the entire ice like so many wedges to thrust the whole apart, thus causing the great and gradual expansion. The very reverse phenomena should take place in freezing, as these seams are widest at the top; hence as a consequence, when the water commences freezing, the contraction is sudden, and of less extent. When the ice grows very thick-to about two feetin depth-it becomes more compact; all the seams cement together, and the whole phenomena of the ice movements cease."

The permanganate of potash dissolved in water, at the rate of one drachm to the pint, is stated to be a wonderful soothing agent for burns and scalds.

The want of a simple, cheap, and efficient $\mid \mathrm{L}$, and toggles, sacured to the slides, the han-stave-jointer has long been felt, especially for flour barrels, where a perfect joint is of great importance, as it not only protects the contents from injury, bus adds to the strength of the barrel.
Our illustration shows a stave-jointing ma chine that, when run at the required speed, will make an excellent joint, suitable for "tight work" or "loose." It makes the bilge uniform, and the staves of equal width at both ends; and they are thrown off as quick as finished by a simple automatic ar rangement.
A is a horizontal framing, having uprights, B, attached to it, and connected by cross-ties C. D is a shaft, having its bearings in B, and carrying a driving pulley, E, bevel wheel, F, and spur wheel, G. This spur wheel, G, drives another, G, which, in its turn, by gearing, H, gives motion to the polygonal wheel, I. This polygonal wheel is mounted between the uprights, B B, so that it is free to rotate betweenthem. On each surface of I a spring, a, clamp, b, and spring clamp, c, are secured, to hold the stave while being jointed. On the top of the cross-ties, C, slides, J, are placed, carrying the cutters, K , according to the inclination of the bits, d, on which the " bilge" will be regulated. These cutters can be brought nearer together or moved further apart by the lever handle,

L, and toggles, sacured to the slides, the hanc. The cutters ore rotated from the bevel wheel, F , by a vertical shaft, M , carrying a band wheel, N , the band, O , of which, passes around pulleys, P P, on the shafts of the cutters, K, and round a compensating pulley, Q , to keep the band properly "iaut" at whatever distance the cutters may be placed from each other.
The operation is as follows :-Power being applied to E , the cutter-heads are rotated by F, and the means just described. The wheel, G^{\prime}, is also rotated comparatively slowly from D by G, and G^{\prime} again rotates H and I still more slowly by a small gear wheel (not seen in the illustration), the relative size of the pulleys being such as to insure a proper slow movement of I. The staves being.placed on I, they are caused to pass between the cutters. The ends being the highest, have, of course, more cut away, and the centers being the lowest, have the least, on account of the inclination of the cutters and the difference of the distance between the center of each surface of I and its center and the ends of each surface. This forms the bilge. The action may be simply described thus:-When the stave first comes between the cutters it is cut away to form the end of the stave, and as it passes through them, it gradually descends
until it arrives at the center; it then gradual
ly ascends to the same point on the cutter a the other end, and so is cut equally. When cut, a spring on the side of the machine (not een) catches and holds back c, releasing the stave, and the spring, a, throws it off. Stave can be jointed by this machine as fast as they can be put on the wheel, I, by an at tendant. A foot lever may be substituted for L, if desired.
The inventor is W. Halderman, of Freeport, Ill., and he will be happy to correspond with any parties wishing further information The patent is dated Oct. 19, 1858.

District Telegraphs.
A company has been formed in London for the purpose of providing the citizens with the means of telegraph communication as a substitute for post-carriers. The city is to be divided into eleven districts, each containing one hundred stations, so as to ensure the de livery of any dispatch in a very fow minutes in any part of the metropolis. Messages of ten words are to be sent any distance within four miles for about eight cents. In our opinion the telegraph has not yet fulfilled it. true mission, and it never will do so until it is rendered so perfect and economical in its operations as to be a substitute for the lettercarrier to an extent not yet dreamed of by its promotors. This London telegraph company is moving on the right track to secure this end, but we think New York once had some some such system at work, which dropped through.

Omnibus Cleanliness.
In Paris the doors have been removed from the omnibuses, to the great benefit of passeugers, who thereby obtain an abundance of fresh air-something which they were unable to do before. This kind of vehicles are generally very close and confined, and doors are more of an incumbrance than a benefit. Tho floors of Paris omnibuses are never covered with straw or matting, but wooden slats or rails, with spaces of about half aninch beween them. These act as a scraper for the passenger's feet, and the dirt falls on the floor below, which is inclined. The jolting of the mnibus makes this dirt run to the back end, where it falls out by gutters on the street, and thus the floor is always kept in a clean conthus

Concrete Floors.
The lower floors of all the cellars of houses should be composed of a bed of concrete about three inches thick. This would tend to render them dry, and more healthy, and at the same time prevent rats from burrowing under the walls from the outside, and coming up under the floors-the method pursued by hese vermin where houses are erected on a andy soil. This concrete should be made of washed gravel and hydraulic cement. Common mortar mixed with pounded brick and washed gravel, makes a concrete for floors nearly as good as that formed with hydraulic cement. Such floors become very hard, and are much cheaper than those of brick or flagstones.

New Electric Conductor.
The power of straw as a conductor of electricity has been utilized in the south of France, no less than eighteen communes in the neighborhood of Tarbes having been provided with conductors composed of straw. Experiments show that an clectrical shock sufficiently powerful to kill an ox may be discharged by a single straw.

into the cyll scourer, as describ bd.

CThis invention consists in the employment of a
last spout, fan and scouring device, arran ged relative ly with each other, so that a verrice, arran compact relative eaficient last before entering the scourer, while pasin thas before entering the same, and also afcourer, while leaving the pasoure
the just previous to leaving the machine.]

 Yetaso claim the arrangement of the windlagg wit
reterence tothe box, A. and brake. C, and for the pur
pose as apecified.

 Appaparos. For SLADGipering Hogs-G. W. B.

 ever form it may be contrincted
a Ftatho The combination of the
arevolving blast.

 Secone, Rendering the fotot.board adju utable to feet
of various widthe by constructing it in Aectiong.
 bride, either geparately or combined, when the same
are congmitucted and operating substantially in manner
and tor the purpose set forth.

ruovire
[Horizontal rotating cutters are used in this mower and the machine placed in front of the team. The inventioncongists in a peculiar construction and arrange-
ment of the cutting device, whereby it is made to act very efficiently, and with but a moderate application of power ; also, ina peculiar arrangement of the pole,
whereby the machine can be turned with much greater ease than usual.]

 brace E, ahd gha ndard, A, with the Whael, H, and
Plow-bean,, , te whole being congruted for operat-
ing substantially as and for the purpose describee.

 VaLVE GraB-A.A. Wood, of New York City:
claim the combinationof of the linke D, and E E, at-
tached to the eccentric rod, and arranged with, adtached to the eccentric rod and arranged with, ad
justing gear, as described, or in manner equivalent.

 fir 9
into existence, and expired after the issue of a few numbers. Our circulation has steadily increased from the beginning up to the present time; and we have special reason to thank our friends for their earnest exertions to aid its circulation.

We intend that the contents of our columns shall be perfectly reliable, so that our readers may know what to depend upon. If we stumble upon Hot-air or Static Pressure Engines, Paine's Gas, Fire Annihilators, or any other discoveries or inventions of doubtful utility, we shall, as heretofore, deal with them as they deserve, and invariably give scientific reasons for our position.
The columns of the Scientific American are at all times open to contributions from practical men upon the various industrial interests of the country. We invite such communications; and we only reserve to ourselves the right (which all editors must carefully exercise) to amend or reject them entirely, if, in our judgment, the interests of our readers will be promoted thereby.

The Preservation of, and Season to Cut,

Messrs. Editors-In your paper of the 5th ult. I noticed an article and your remarks on the time to cut timber. The assertion is correct that July anã August are the best months for cutting timber, according to the early or later maturity, south or north. I early or later maturity, south or north. I
will endeavor to give an explanation of this : Physiologists inform us that the characteristics of sap are different at the various seasons of the year, and also that the contents of the cells of the wood and buds share in the same change, according to the seasons. Thus we learn that in the Fall, the energies of the tree are used in filling the cells and buds with starch, sugar, \&c., which remain there all winter; that by the genial infloences of spring these supply the material for the evolution of leaves and twigs, which grow so rapidly in the spring months; and that, with little interruption, these materials for the Cormation of woody fiber, leaves, and frait, are to be found in the sap until the process for the year is completed in July or August, and nature reposes in the full glory of her perfect work.
Researches have proven (and we can easily repeat them) that at nearly every period of the year but this, starch, sugar, \&c., can be extracted more or less abundantly, but that at this time neither the sap nor a decoction or infusion of the wood will afford these matters. We are also informed that Permentation is usually the first step towards decay, and that the substances I have mentioned are vastly more susceptible of fermentation than the well-ripened woody fiber; hence, if you can cut timber at a season most free from fermentable substances, you best secure ite durability.
wood for a long time in running water is followed by an increase of durability owing to the water dissolving and carrying off fermentable matters. Kyanizing or saturating wit'ı mineral ingredients of various character prevents fermentation, and thus secures the object.
This subject is one of immense importance to railroad and telegraph companies. My experience in posts is very much in favor of July cut timber from deciduous trees. I am not sure about evergreens.
Q. E. D.

Roswell, Ga., March, 1859.
Gas-light Tubes.
Messrs. Editors-I was pleased with a suggestion in your paper not long since in relation to the importance of some provision for the escape of the products of combustion in gas-burners. I suppose that few person have any suspicion that it is a matter of any consequence. Can you not give some statements in regard to the nature and amount of these products?
L. L. P.

Hartford, Conn., March, 1859.
[The products of gas in combustion are carbonic acid and water; and as a portion of
tion, it forms carbonic oxyd, which is a deadIy poison. The hydrogen of the gas unites with an equal volume of oxygen, and forms water hence we have water, carbonic acid and oxyd as the products of combustion. It require eight cubic feet of air for the perfect combus tion of one cubic foot of gas; these produc three feet of carbonic acid. A burner con suming one and a-half cubic feet per hour re quires twelve feet of air, and forms four and a-half feet of carbonic acid, two per cent of which, in any atmosphere, renders it unf for healthy respiration.-Eds.

To make Cooped Hens Lay.
Messrs. Editors-It is pretty well known that hens will not lay, except occasionally, when " cooped up." It should be extensively known that a small daily allowance of raw meat of any kind will restore not only the power to the hen, but the necessity to lay every day, supposing, of course, that the other portion of the food is of the ordinary kind. No fowl lives exclusively on a vegetable diet; and when running at large, domestic fowls will be found searching for insects with great avidity. Those of your farmer readers who are not aware of this fact, may obtain a better supply of eggs by following this advice.
R. H. A.

Produce of Corn in Ancient Times.

The returns of seed sown, as mentioned by ancient authors, are very remarkable. A hundredfold, Varro informs us, was reaped about Garande, in Syria, and Bysacium, in Africa. Pliny adds, that from the last place there were sent to Augustus from his agent, nearly 400 stalks, all from one grain, and nearly 400 stalks, all from one grain, and
also 340 stalks. He says he has seen the soil also 340 stalks. He says he has seen the son
of this field, "which when dry, the stoutest oxen cannot plow; but, after rain, I have seen it opened up by a share, drawn by a wretched ass on one side, an old woman on the other." The returns in Italy were much less extraordinary. Varro says, "There were sown on a jugerum four modi (pecks) of beans, five of wheat, six of barley, and 10 of far (maize), more or less, according as the soil is rich or poor. The produce is in some places ten after one, but in others, as in Tuscany, fifteen after one." This, in round numbers, is at the rate of 21 and 32 bushels on an English acre. On the excellent soil of Leontinum, in Sicily, the produce, according to Cicero, was no more than eight to ten for one. In Columella's time, when agriculture had declined, it was still less.

Prizes for Inventions and Discoveries. The Society of Arts in London offers pre miums in gold medals and small sums of money, for the discovery of a substitute for cotton, an incombustible paper for the books of commercial men and bankers, an economic system of railway transit applicable to common roads to connect thinly populated districts with the main lines of railroads, and the inroduction of a system of railways for common roads and in the streets of towns.
This latter system is in common use in our American cities, and all that has to be done in England, is just to adopt it. In noticing the daily tumbling, jamming, and cramming or horses in our streets, we really think ; would be a decided improvement in point of cleanliness and comfort, to adopt iron horses or stages, could this be done with equal safe ty and economy ; upon humanitarian principles the change would be a most benevolent one.
The Nicaragua Canal.-The mysterious Frenchman, Monsieur F. Belly, announces in the Paris journals that his organization of the Nicaragua Canal Cumpany is completed; that the money necessary is secured; that the vessel has been freighted to carry out the engineering material, and that this vessel, with himself, some of the engineers and clerkssixty persons in all-will sail from Havre for Greytown in three weeks. We have no doubt that this energetic personage will get his sto mach full of this job before he has been in Greytown three weeks.

