IIIGTT AND MAGNITUDE

Little by little the belief is gaining ground that fat is not force, nor size strength, nor pletbora power. If we are to trust the most modern deluctions of science, Goliath ought to have been a monster of weakness, while Samson, whose feats proclaim Lis prowess, can harlly have reached the middle hight. Hercules, too, must have been quite a small man. "Long and lazy, little and loud," are proverbial expressions physically accounted for. The Pygmei of Thrace, who went to war with the cranes, were in deed a valiant race, if only three iuches high.
The bodily frame of any animal is as much a machine as a steam engiue is a machine. Now the more carbon a machine consumes, the more force it is capable of producing.
We must be careful to avoid firgettiug that, in strict fact, at the present epocb, not a single thing in nature is either created or aunililated. It is transformed, and that is all. Thus, you may burn a piece of paper; but you do not destroy it. You sin. ply make it suffer a metanorphosis. If such be your desire you can find it again, and collectits substauce, weight for weight. Instead of retaining its primitive shape, the greater portion hos passed into a gaseous state. It has become partly gas, which mingles with the atmospliere, and partly ashes, which rall to the ground.
Force undergoes similar trausformations. We do not sencrate our own strengtb, as we are apt, in our pride, to fancy we do. We receive it ready generated, and then we transform it or displace it. Charcoal, for instance, in obedipnce to our will, supplies no with heat, that is, with force. Do you think that it really creaips that force? Iudeol it does not. It derives it from the sun. Aud when, in the deptis of winter, a hright sea-coal tire is blazing in the grate, all the light and heat it gives are bestowed at the expense of the solar heat.

In truth, every vegetable substanca has beeu actually built up, bit by bit, organ by organ, by rays of light and heat from the sun. The materials so grouped remain together; but only on one condition, vamely, that the solar force, which originally assembled them, shall not guit them.

Coal is a mass of vegetable matter, which has been buried in the earth for a considerable lapse of time. It is solar light and heat put into a savings bank ages upon ages ago. It is power and action from the sun, imprisonell in the bowvels oi the earth. To us nineteenth centurians falls the lucky task of making it our slave, by setting it at liberty from its primeval trammeis. Throw a piece of coal or wood into the fire; it is absclutely as it you took a small quantity of sun heat in your hand, to manipulate it according to your requircments. Lnd this is not a mere form of speech; it is a correct expression of the real fact.

When an animal exerts his strength, do you also believe that he creates that strengtt? Nut more than the coal creates the steam engine's strength. Here again it is cutirely derived from the sun. The animal eats. What does he consume to keep himself alive? Alimentary substances, composed, in few words, of carbon, oxygen, azote, and hydrogen. In an animal organism, those elements undergo a veritable translormation. Outside the animal, before they were eaten, they were combined, aggregated, united together, and in that siate constituted lood. Inside the animal, they are disunited, decomposed; the force which held them together quits them, allows them to separate, and so is free to do other work. It causes the creature's body to grow; endows it with vital and muscular force; and, in short, produces all the phenomena of life.
Who createl the aliment? The Sun-himself created by the Great Maker of all things. Here again, therefore, the life and strength possessed by an adimal are actually engendered by the sun.
Throughout your whole existence you will find, by following up the same reasoning, that your most trifing act, your most thoughtless movement, has derived its origin from the sun. A blow with the fist, a breath, a sigh, can be exactly estimated in rays of sunsline. Whether you trifle or whether you work, to make such an effort sou have been obliged to expend so much strength; and that strength had
agency of a series of transformations. Your clothing is all borrowed from the sun. It is he who has spu every thread of your linen, aud fed every fiber of face, have heen mpecies, placel on a plane suryour cloth and flannel. He either bleaches it snowy , weights.
white, or dyes it purple and scarlet with indigo and madler. He furnishes leather for useful service, and furs and feathers tor finery and parade. He gives you sour bedding; whether you repose luxuriously between eider down and wood, or stretch your weary limbs on straw, chaff, Indian corn husks, seaweed, or even on a naked plank, as is the lot of not a few, it is the sun who gives both the one and the other. And what do we receive from regions where the sun, as it were, is not-from the immediate neighborhood of either pole? We receive just nothing. We canuot evan get to them. The absence of the sun bars our jrogress with an impenetrable zove ot ice and snow.
In like manner, your tine cellars of hock, burguudy, and claret are nothing but bottled sunshive from the bauks of the Rhine, the slopes of the Cote d'Or, aud the pebbly ; lain of the Medoc. Your lutter and cbeese are merely solid forms of sunshine absorved by the pasture; of Holland or Cambridge shire. Your sugar is crystallized sunshine from Jamaica. Your tea, quinice, coffee, and spice are embodiments of solar iufluences shed on the surfaces of Cbina, Peru, and the Iudian Archipelago. It is the sun's action which sends jou to sleep in opium, poisons you in strychnine, and cures in decoctions of tonic herbs. You taste the sun in your sauces, eat him in your meats, aud drink him even in your simplest beverage-water. Without the sun, vo blood could flow in your veins; your whole curporeal vitality, your very bedily lite, is the result of the overllowings of his bounty.
Nor is this all we owe to our great central lumiwary. The physical forces with which we are ac-quainted-heat, light, electricity, magnetism, chenical aftinity, and motion-dancing their uragic round, and alternately assuming each other's form and action, and now believed in all probability to be one in their common birth and origin-are direct emana tions from the sun.
But how grand and heautitul is the theory that all material blessings here below come to us entirely and alone from the surit Its simplicity and unity are completely consistent with the atiributes of the Naker. Given motion, and given matter, all the resi follors as an inevitable consequence. All nature, from the simplest fact to the most complex phenomenon, is nothing but a work of destruction or reconstruction, a displacement of torce from one point to another, according to laws which are absoutely general.
With this much said about might, let us now look at the question of magnitude. From the foregoing statements, it may easily be conceived that the more an organized being is capable, in consequence of its physiological structure, of assimilating a given amount of aliment, the more effective force it will set at liberty, or, in other words, the more strength it will have at its own disposal.
Now, the solar forces, thus rendered active within the franse of a living creature, bave, by determining its growth, to construct the animal itself. They have to generate its own proper vitality, as well as the result of vitality, its muscular power. It may therefore be asserted that the eflective force at the dispozal of every living creature will increase in proportion to its alimentation, and will diminish in proportion to its weight. Otherwise expressing the same idea: The more food an animal consumes and the less it weighs, the more muscular strength it will possess.
These deductions have lately been confirmed by curious experiments instituted by M. Felix Plateau, who has determined the value of the relative muscudrawing, and the weight which the creature is able to fly away with.
It had already been remarked that animals of small stature are by no means proportionally the weakest. Pliny, in his "Natural History," asserts that, in strength, the ant is superior to all other creatures. The length and hight of the flea's leap also appear quite out of proportion to its weight. No very definite conclusion, bowever, had bitherto been arrived at. M, Plateau has settled the question

A man of thirty, ereighing on an arerage a hundred and thirty pounds, can drag, according to Regnier, only a hundred and twenty pounds. The proportion of the weight drawn to the weight of his body is no more than as tivelve to thirtern. A draught horse can exert, only for a few instants, an effort equal to about two-thirds of his own proper weight. The man, therefore, is stronger than the horse.
But, according to N. Plateau, the smallest wsect drags without diffliculty five, six, ten, twenty times its own weight, aud more. The cockchaler draws fourtee: times its own weight. Other coleoptera are able to put themselves into equilibrium with a force of thaction reaching as high as forty-two times their own weight. Insects, therefore, when comparcd with the vertebrata which we employ as leasts of draught, have enormous muscular power. If a horse had the same relative strength as a donacia, the traction it could exercise would le equivalent to some sixly thousand pounds.
M. Plateau las also adduced evidence of the fact that, in the sare group of insects, it you compare two insects, motably differing in weight, the smaller and lighter will manitest the greater strength.
To ascertain its pushing power, M. Plateau introduced the insect into a card-paper tube whose inuer surlace bad beeu slightly roughenctl. The creature, perceiving the light at the cnd through a trausparent plate which barred its passage, advanced by pushing the latter forward with all ils might and maiu, especially if excited a litt'e. The plate, pushed forward, acted on a lever connected with an apparatus for measuring the effort made. In this case also it turned out that the comparative power of pushing, like that of traction, is greater in proportion as the size and weight of theinsect are small. Experiments to determine the weight which a flying insect can carry were performed by means of a thread with a ball of putty at the end, whose mass could be augmented or reduced at will. The result is that, during fight, an insect cannot carry a weight sensibly grea'er tban that of its own body.
Consequently, man, less heavy thau the horse, has a greater relative muscular power. The dog, less heavs than man, Jrags a comparatively heavier burden. Insects, as their weight grows less and less, are able to drag more and more. It would appear, therefore, that the muscular force of living reatures is in inverse proportion to their mass.
But we musi not forget that it ought to be in direct proportion to the quandity of carbon burnt in their system. To put the law completely out of doubt, it would be necessary to determine the exact weight of the food consumed, and the quantity of carbonic acid diseugaged in the act of breathing. Some chemist will settle it for us one of these days. -All the Year Round.

NOTES ON NEW DISCOVERIES AND NEW APPLI. cations of science.

silk from fishes.

The epidemic which has of late years wrought such ravageamong the silkworms has led to a vast amount of searching for substitutes for silk, and M. Joly, a well-known chemist of La Rochelle, conceives tbat he has at lenglh found one likely to become or practical importance. He has foumd it, singularly enough, in the sea-that is to say, within the bodies of certain marine fishes. The exterior envelope, he tells us, of the eggs of the fishes in question consists of a very fine tissue composed of an immense number of exceedingly delicate filaments, which admit of being readily separated, and then exactly resemble those of ordinary silk. The eggs are twenty-five centimeters in diameter one way by thirteen the other, and weigh 240 grammes each, and in their interior is a white albuminous matter, which M. Joly believes can be utilized in calico printing, and a yellow coloring matter, which be imagines may prove valuable as a dye. The obtainment from the envelopes of the eggs of a naterial for textile fabrics, closely resembling ordinary silk, he declares to be economically practicable on any scale.

photograpiic engraving

The great advantage of the process for obtaining yhotograpibs on copper plates，which we describel last week，consists in the circumstance that photo graphs so obtainel may be readily＂bitien io，＂so as to enable the plate to be printed trom just as though they were ordinary engraved plates－the result，how－ ever，being a far more perfect reproduction of the original photographic picture than could be obtained by the most skilful mechanical engraving．When it is desired to etch a photographic picture obtained on a coppar plate by this process，the plate，after having been dried must be varnished on the back and sides，but mot on the face，mnst have all the black dust composing the siadows of the picture carefully removed，must next be well washed under a strong jet of water，and must then，without first dry－ ing，be pluaged into the liquid to be employed as a mordant．A suitable mordaut is one consisting of one part of ritric acid，two parts of a saturated solu－ tion of bichromate of potasb，and five parts of water． Where more convenient，the nitric acid way be re－ placed by sulphuric acid．The quantity of this mor－ dant used in the first instauce should we simply enough to completely cover the pate，but from time to time，as the liquid turns blue，more shoull be added，the action of the mordant being conti aued for a whole day，or for even longer，according to the tem－ perature．Tho mordant acts only on the bare copper， and does not affect those parts of tho plate which are cosered by silver，so that the result is an Incised engraviog，fit for pitnting from．If，instead of treat－ ing the plate as thus lescribed，the black dust com－ posing the dark parts of the original picture be not rubbed off，and the wordant used consist of iodine associated with either bichromate of potash or nitric acid，an engraving in relief will be obtained，the iodine acting only on the parts of the plate on which there is a deposit of silver，and from this engraving in relief a reversed proof，suitable for printing from， may be procured by the galvano－plastic process．

peroxide of hydrogen．

Protessor Schonbein has discovered a nex and very ready methol of procuring the peroxide of hgdrogen．It consists simply in agitating，in a large flask，to which air has access，amalgamated zinc，in powder，with distilled water．Oxygen is then ab－ sorbed by both the zinc acd the water，with formation of oxide ot zinc and peroxide of hydrogen．The peroside of bydrogen o＇btained by this method，unlike that obtained by the ordinary process，is quite ree from acid，and so may be kept for a long time with－ out decomposilion．It does not contain，moreover， a trace of either zinc or mercury，but is absolutely pure．This new process has therefore great advan－ lages over the old process of preparing peroxide of hydrogen，both as being far simpler and more expe－ ditious，and as sielding a much purer product；but it is almost as far as the old process from yielding peroside of hydrogen cleaply enough for use in the arts．－Mechanics＇Magazine．

GLEANINGS FROM THE POLYTECHNIC CDISCUS SIONS．

the galvanometer－measuring nagnetic currents－ telegraph insulators－deep gullies．
Prof．Tillman：－There is a great want for means of measuring the stength of magnetic currents．Every current will deflect a magnetic needle which it passes near，and the stronger current will deflect the needle more；but a current twice as strong will not deflect a needle twice as much．Now what is the law？There is room for invention here．The various European savans have attacked the problem，but as yet the world is without a galvanometer which will give mathemati－ cally the proper relations．Gen．Leflerts and Mr．Far－ mer，of Boston，have succeeded in manufacturing coils of small wire which will give uniform amounts of re－ sistance to currents passing through．Dr．Bradley，of Jersey City，has recently combined a very compact and effective instrument，using a quantity of these coils or spools of wire．
Dr．Bracley：－Weak currents，which deflect the needle a little，produce deflections which are propor－ tional to their force ；a current twice as strong，pro－ ducing twice the deflection．This law holds good only for small angles of deflection．As the angles increase， it requires a greater addition to the current to add an equal amount to the deflection．A magnetic needle
points to what we call the magnetic pole，near the north pole of the earth．The artificial current to be measured is carried under such needle in the direction parallel to it．The tendency of all currents is to in－ duce the needle to stand at right angles thereto．A weak current will produce a deflection－it will pull the needle to one side－but no current can be made so strong as to pull it quite around at right anglesto the magnetic meridian．De La Rive conjectured that the tangent of the angle of deflection of the needle was an approximate measure of the force of the currents． There are strong reasons for believing that the tangent of the angle is an exact measure of the force of the currents．．But the speaker had based his instrument on no such supposition．It was well determined that an equal force would produce an equal deflection．The Bradley instrument is constructed on that principle alone．
The series of Leffert＇s and Farmer＇s resistance spools were arranged like a grocer＇s weights so as to give any resistance desired．The unit of resistance was that due to the traversing of a mile of number eight galvanized－iron wire，well insulated．By switching a number of these spools together he could make a re sistance of six，hundred miles，or could subdivide it down to hundredths of a mile．
The chief practical importance in the present state of the arts of an exact measure of resistance is to select and adjust telegraph instruments Send the current through one，and measure the deflection of the needle produced by the current which passes that resistance． Then send the current through the resistance meas－ ure，and switch on or take off the resistance spools until the needle is deflected the same．Then read the result on the switch levers，as accurately as you weigh a lot of hay on the best Fairbank＇s platform scales．
Actual telegraph lines alwaysimpose more resistance and loss than the theoretical standard miles；but are rarely if ever so bad as to offer double the standard resistance．
Mr，Sletson：－Bad insulation in wet weather is another great difficulty to be met by inventors in tele graphy．The webs of insects extending across，become so good conductors when wetted by storms as to se－ riously impair insulation．This is the main cause which prevents the success of otherwise excellent inven tions，for insulators．Who can overcome the mighty obstacle imposed by a spider＇s web to the progress of invention in this line？
Dr．Stevens：－The wearing or gullying away of the earth by the action of streams is familiar to all；but the immensity of this influence in modifying the sur－ face of our ghobe is rarely appreciated except by the professed geologist．The Niagara has excavated a valley or narrow ditch with perpendicular sides，so deep that the surface of the water for about twelve miles below the falls is some three hundred and fitty feet below the adjacent country．The Ohio river be tween Pittsburgh and Cincinnati，runs some seven hundred feet below the natural level．It has excava－ ted a valley to that depth．But such instances of the sinking of streams much below the general level o the country through which they pass，though compara tively rare east of the Mississippi，are very common in the great territories of the West；there they are the rule．Canons of immense depth seem to be the natu－ ral accompaniements of the water courses．The most remarkable instance in the world is the Black Canon， where the Colorado river flows through the Black Mountain region．The land lies in elevated plateaus， For a little distance the general level of the land im mediately adjacent is six thousand feet above the sur－ face of the river．At one point there is a perpendicu－ ar precipice forming one bank of the river which is one mile high as measured and verlfied with ordinary care by repeated observations by the anaeroid barom eter．

Lacquers，

Lacquers are used upon polished metals and wood， to impart the appearance of gold．As they are wanted of different depths and shades of colors，it is best to seep a concentrated solution of each coloring ingre dient ready，so that it may at any time be added to produce any desired tint．
1．Deep Folden－colored Lacquer．－Seed lac，three ounces ；turmeric，one ounce ；dragon＇s blood，a quar－ erof an ounce ；alcohol，one pint．Digest for a week， requently shaking．Decant and filter．
2．Gold－colored Lacquer：－Ground turmeric，one pound ；gamboge，an ounce and a half ；gum－sandarach， three pounds and a half；shell lac，three－quarters of a pound（all in powder）；rectifled spirits of wine，two
gallons．Dissolve，strain，and add one pint of turpen tine varnish．
3．Red－colored Lacquer．－Spanish anatto，three pounds；dragon＇s blood．one pound；gum－sandarach， three pounds and a quarter ；rectifed spirits，two gal lons ；turpentine varnish，one quart．Dissolve and mix as the last．
4．Pale Brass－colored Lacquei：－Gamboge，cut small， one ounce ；cape aloes，ditto，thrce ounces；pale shell lac，one pound；rectifed spirits，two gallons．Dis－ solve and mix as No． 2
5．Seed lac，dragon＇s blood，anatto，and gamboge，of each a quarter of a pound；saffron，one ounce；recti－ ied spirits of wine，ten pints．Dissolve and mis as No． 2.
The following recipes make most excellent lac quers ：－
1．Gold Laoquei．－－Put into a clean four－gallon tin 1 pound groand turmeric， $1 \frac{1}{2}$ ounces of powdered gam－ boge， $3 \frac{1}{2}$ ounces of powdered gum－sandarach，of a pound of shell lac，and 2 gallons of spirits of wine． After being agitated，dissolved，and strainea，add one pint of turpentine varnish，well mixed．
2．Red Lacquer：－2 gallons of spirits of wine， 1 pound of dragon＇s blood， 3 pounds of Spanish anatto，4त⿱亠八厶卩 pounds of gum－sandarach， 2 pints of turpentine．Made as No． 1 lacquer．
3．Pale Brass Lasquer：－2 gatlons of spirits of wino， 3 ounces of cape aloes，cut small， 1 pound of flac pale shell acc， 1 ounce of gamboge，cut small，no turpentine varnish．Made exactly as before．
But observe that those who mako lacquers fre－ quently want some paler，and some dariser，and some－ times inclining more to the paiticular tint of certaln of the component ingredients．Therefore，if a four－ ounce vial of a strong solution of each ingredient be prepared，a lacquer of any tint can be procured at any time．
4．Pale Tin Lacquer：－Strongest alcohol， 4 ounces； powdered turmeric， 2 drachms；hay saffron， 1 scruple； dragon＇s blood in powder． 2 scruples；red saunders，$\frac{1}{3}$ scruple．Intuse this mixture in the cold for 48 hours， pour of the clear．and strain the rest；then add pow－ dered shell lac，$\frac{1}{2}$ ounce；sandarach， 1 drachm ；mas－ tic， 1 drachm ；Canada balsam， 1 drachm．Dissolve this in the cold by frequent agitation，lasing the bot－ tle on its side，to present a greater surfice to the alco－ hol．When dissolved，add 40 drops of spirits of tur－ pentine．
5．Another Deep Gold Lacquer．－Strongest alcohol， 4 ounces；Spanish anatto， 8 grains；powdered turmeric， 2 drachms ；red saunders， 12 grains．Infuse and add shell lac，etc．，as to the pale tin lacquer；and when dissolved add 30 drops of spirits of turpentine．
Lacquer should always stand till it is quite fine，be． ore it is used．－Larkin＇s＂Brass and Lron Fowder．＂

Evglise engineers have found cut that one of our monitors，the Monadnock，made an excellent voyage to Valpariso，that she encountered the ordinary gales andbehaved as well as any ship in the squadron．The monitor carried two 15 －inch guns in each turret and her sides are but 15 inches out of water．It appears that the new English turret vessel Nonarch has sides 14 or 15 feet high，which makes some grumbling among engineess；they do not seem to like such ex－ alied structures．

The following opinion of Mr．Solly was sent to Rome by telegram，by one of the late Mr．Gibson＇s friends． It is a curious sign of the times in two ways：first，in the mere fact of such a means of transmission of med－ ical advice；and，secondly，in the extraordinary dread of bleeding a patient which exists out of，as well as in． the profession，at this present time．The message was：＂Mr．Soliy thinks no blood－letting is required， unless the head be hot and painful．Quiet and nourish－ ment are indicated．＂

We understand that Capt．John Erlcsson is to be paid $\$ 13,930$ as his reward in full for planning the United States war steamer Princeton，and superintend－ ing the construction of machinery of the ressel．Mr． Ericsson has realized a large fortune by his improve－ ments and inventions during the war，which we re－ joice to hear，as his services and skill have been ex－ ceedingly valuable to the Government．
A Nemspaper in Californiasays they are so mnch an－ noyed out there with mosquitoes and bed bugs，that a physician advises，first a bath in a solution of soft soap and molasses，then a sprinkle of saw dust on the head， after which the patient should take to his bed and maintain perfect repose．

