EENEWING WORN BANK-NOTE PLATES.

A clean, crisp, comfortable bank-note is not a luxury to be indulged in every day by the majority of mankind; nevertheless, wiost people are familiar with its appearance. Its production involves no small amount of labor, altbough by subdivision and distribution a very large numiver are now produced in a very short time. Much care and nicety have alrays been bestowed upon it, and are especially domanded in the present day, when the means of imitation are so well within reach of the designing aud unscrupulous. The chief object in the manufacture of bank-notes is to render forgery impossible, or at least easy of detection. This is zought to be effected by peculiarity of paper, design, and printing, or by a combination of these means, as is done in the Bank of England, and other banks. The mechanical design, however, has chiefly been relied on for seeurity. It has beon the constant aim to make the imuression such as to render the genuine note readily distinguishable by the public for its bigh art, and to the bank officials by secret peculiarities in its execution. A further sceurity was formerly afforded against forgery by a selt registering machine, which was contrived by the Messrs. Oidham. By this machine each note was impressed with a distinctive mark known only to the bank authorities. Until about 1837 copper-plate printing was the only process in uze for bank-notea. In tbat year, howevar, Messrs. Perkins and Heath effected their valuable itrprovements in practical cnoraving. This was the reproduction of dusigns by the mill and die by mecłranical pressure, and which, when applied to calico printing, was attended with such extraordinary re sults. This inveation simply consisted in engraving the pattern on a solt stcel plate, which was after ward hardened, and the pattern transierred by pressuse to a sott steel roller. The patteru was, of course, produced in reliet on the roller, which was bardened to reproduce the pattern on the plate from which the prin.ing was to be done. In 1855 electrotype priming was introdaced in the Bank of En elent by Mr. Smee, and since that time the notos have been produced by surface printing by the electro tspe.

In the bank of Ireland the plates are prepared ac cordiner to Perking and therin': merhod The separate designs forming the complete bank-note are Brst engraved by hand on separate steal blocks, which are atterward hardened, and are preserved as permanent patterne not to be primted from. These engrav ings are translerred to the steel rollers under heavy pressure, the rolers being afterfard barlened and used as dies to impress the engraving upon the print ing plates. The engraved plates for printing the hank-notes are made of soft steel, and are never hard ened after being engraved. Being of large size20 ln . by 103 in .-they would most probably lose their flatuess in bardeuing. Anothr reason for not hardeniag the plates lies in the fact that when worn, the soft plates are easily repaired again by means of a special arrangement, designed for the pumose by Mr. Grabb, the engineer to the Bank. By *ins arranomeat the rollers are applied acalu to the plates sin perfect accuracy for reneming the im pression. The printing plate, when receiving its first impression from the master roller or die, i_{s} fiard upon the table of a strong press, from which a pressure of 5 tuns can be obtained, the pressure being regulated as required by means of a weighted lever. The position of tivo register points in the plate is accurately noted by means of micrometer microscope, and registered in a book kept for the purpose. Tije master roller is then passed over the pate by the machine under the heavj pressure, beling very steadily guided by a special parallel mo tion arrangement. The table is provided with complete aojustments of peculiar clelicacy, and the press ure of the engraving roller upon the plate is not produced by the roller deacending upon the plate, but by the table being raised up to the roller.
Being of considerable meight, the table is balanced so that ixs vertical movement is effected with a forse equal to a few pounds only. It is provided with two separate lever arrangements, for light and heavy pressures, whereby any pressure, from a few pounds up to 5 tans, can be put upon the plate. When a plate requires renewing it is again fixed upon the
table in the same position as before by means of the micrometer microscope and the register of its position; the roller being passed over it deepens those parts of the impression which the continuous print ing has worn away. The renewal of plates is effected with the utmost accuracy; indeed, so perfoct is the process that the finest lines in the engraving are preserved without becoming perceptibly coarser even after a plate has undergone many renewals. Thus, the most delicate engravings are restored as often as required in plates, when worn by the process, of printing, with the greatest eertainty and facility. Should it be necessary to bring up the impression on any special portion of the plate, even this can be done. It is efferted by a delicate adjustment in the bed of the table, by which the plate can be slightly iilted transversely to the direction of the motion of the roller, and thereby increasing the pressure at any particular point. In order to obcain this tilting motion the bed is made with a convex cylindrical segment lying within a concave one, the plate being in the center of motion. The movements for adjustment are effected by screws so finely set that they will adjust to a thousandth part of an inch. --Mechan ics' Magazine.

The " Nautilus."

A trial has recently been made of a new principle of motion, as applied to vessels, called the Rydraulic Porpeller, Ruthven's patent. The Nautzlus, to which the puwer has been applied, was built expressly to show that it can, with less horse power than ordinary river boats, equal them in speed. The Nautilus at the trial started from Vaushall Bridge pier at eleven o'clock in the morning, and ran up and down the Thames in company with the Citizen and other river steaners, and held way with them steadily, gaining a little on some. She ran between Vauxhall and Westminster Bridges with the mod and tide in 4 min .26 sec ., and against in 8 min .22 sec., being at the rate of 13.5 and 7.2 miles per hour respectively, or at an average speed of 10.35 miles per hour-say 101. $\frac{1}{2}$. She then steamed down the river, and when off the Tunnel pier, with both strong wind and tide in her favor, going at full speed, was made to stop suddenly by reversing the valves. She stopped dead in less than ten seconds and in about a quarter of her lengtb. Her Majesty's ironclad gunboat Waterwitch, now being built, is to be fitted with the new propeller, whith is nothind more nor less than water taken in under her bottom and set in motion by simple machinery worked by a steam engivo The water is discharged in a heavy stream on both sides of the vessel; conzequently there is nothing outside the vessel to be injured by any accident. Another important novelty is chat the vessel is quite independe of ler rudder, and is worked under the complete control of the master, officer of the watch, or man on deck, without any communication with the engine. The Nautilus is also fitted with Ruthven's steering apparatus-an invention which gives a large amonat of power to the radide. - Wechorics' Mayazine.
[This principle has beed repeatedly tried in this country, but to use a common expression, the boats so fitted have been unable to " get out of their own way."-Eds.

Pneumato-Electric Organ
Electricity has been very ingeniously and effective ly applied to form a connection between the keys of an organ and the valves which permit air to pass to the pipes. Complicated mechanism is thus got rid or, an extremely simple arrangement, whatever the distance between the keys and the pipes, being substituted. Its mode of action is easily understood. According to the Scientific Review, when any key is depressed by the finger, a small communicator under it completes communication with a galvanic battery by dipping its lower ends into minute cups of mercury. Electricity then passes along a wire to a small electro magnet, that immediately becomes excited, and, attracting a keeper, opens a valve, allowing air to pass into the organ pipe, which sounds at once, and continues to do so as long as the finger presses down the key. It is clear, that, however poweriul the organ or distant the pipes, the fingers are not in the slightest degree distressed in playing. The battery used is simple, inexpensive, and permanent in its action. It consisis of glass vessels,
arranged on the upper surface of the Dellows, and each containing a solution of sulphate of mercury; into the latter plunges a plate of zinc, which is placed between two plates of gas retort graphite, when the bellows is raised by the action of blowlng. No effect, therefore, is produced, except when required, which prevents waste of batiery power.

spectal notices

Jesse S. Lake and David Lake, of Smith's Sandng, N. J., have petitioned for the extension of a patent granted to them on the 20th day of July, 1852, for an improvementin grass harvesters, and re-issued in four several divisions, dated 1st day of January, 1861, and numbered respectívely $9,10,11$, and 12 ; this petition being for the extension of each of these reissued patents.
Parties wishing to oppose the above extension mast appear and show cause on the 2nd day of July next, at 12 o'clock, M., when the petition will be heard.
Eliakim B. Forbush, of Buffalo, N. Y., has petioned for the extension of a patent granted to him on the 20th day of July, 1852, for an improvement in grain and grass harvesters, and reissued the 25th day of May, 1865 in feur several divisions, numbered respectively $1,972,1,973,1,974$, and 1,975 , this petition being for the extensiou of each of these reissued patents.
Parties wishing to oppose the above extension must appear and show cause on the 2nd day of July next, at 12 o'clock, M., when the petition will be heard.

French Iron-clad Navt.

In an account of British and French Navies, Furnished by Mr. Donald McKay, of Boston, to the Herald he appentls the following statement of the French ironclads at the present time, said to have been made up from personal inspection of the vessels:-
Magenta and Soljerino.-Displacement,6,750 tuns; 1.000 horse-power mean draft, 26 feet; length of load line, 280 feet; breaadth, 57 feet; wooden hull; inch armor plating; weight of armor, 900 tuns; spee in smooth water-Magenta $13 \frac{1}{2}$ knots; Sdferino 14 knots
Couronne.-Displacement, 6,000 tuns, 900 horsepreadth 55 feet; iron hull 43 nuif 3 inches armor plating weight of armor 700 tuns; speed in smooth water 13 knots.
Gloir
Gloire.-Displacement, 5,650 tuns; 900 horse-power; mean draft $25 \frac{1}{2}$ feet length of load line, 255 feet; breadth 56 fect wooden hull; 4 inch armor plating; weipht of Invincilde.-- Displacement, 5,525 tuns; 900 horse power; mean draft 253 feet length of load line, 255 feet
 weight of armor, 800 tuns; sioed in smooth water $)$) nnots.
Normandie. - isplacement, 5,650 tuns; 900 horsepower; 111 ean draft 26 feet; length of load line, 255 feet wreazha 56 feet; wooden hall; 4t insh armor plating; s nots.
Flandre, Gauloise and Quyenne.-Displacemeut. 5,700 uns; 1,000 horse-power; mean draft 25 feet; length of oad line, 260 feet; breadth 56 feet, wooden hull; 6 inch armor phatinne: weight of armor, 1,000 tuns
Herent. --Drgacencrat, 5,700 tuns; 1,000 horsepower; mean araft, 25 rect; length of load line 260 feet;
breadth, 56 feet; iron hull; 6 inch armor platin"; weisht of armor 1,000 tuns.
Maqnarime, Provence, Revanche, Savoie, Surveillante, and Vatemease.-Displacement. 5,700 feet; 1,300 horse power; mean draft 25 feet; length of load line, 260 feet weight of armor 1000 tuns. The Provence has made 14 knots in smooth water.
Taureau.-Displacement 2,450 tuns; 908 horse-power; mean draft 16 feet; length of loa line 200 fee ; breadth $47 \frac{1}{2}$ feet; wooden hull; $4 \frac{2}{2}$ inch armor plating; weight of armor, 800 tuns.
power; mean draft 19 ment 3.350 tuns; 909 horse power; mean draft, $19 \frac{3}{2}$ feet; length of load line, 230
feet; breadth, 40 feet; wooden huli; 6 inch armor plat ng; weight of armor 100 tuns,
Paixhans and Palestro-- Displacement, 1,540 tuns; 150 horse-power; mean draft, $\delta^{\frac{1}{2}}$ feet; length of load line, 156 feet; breath 40 feet; wovden hull; $4 \frac{1}{2}$ inch armor plating; weight of armor 275 tuns; speed in smooth water, 7 knots
Peino. Displacement, 1,500 tuns; 150 horse-power; mean draft $10 \frac{1}{2}$ feet; length of load line, 150 feet; weight of armor, 275 tuns; speed on smooth water, 7 knots.
Saigon.-Displacement 1,500 tuns; 150 horse-power mean draft, 10 feet; length of load line, 156 feet; weight of armor, 275 tuns; speed in smooth water, 7 wnots.
Embuscade, Impregmable, Protectrice and Refuge.nisplacement, 1,225 feet; 150 horse-power; mean draft, ${ }^{\frac{1}{3}}$ feet; length of load line 130 feet; breadth 51 feet; iron hull, $5 \frac{1}{2}$ inch armor plating.
Arogante, Implacable, Opiriatre.-Tisplacement. 1,3s0 tuns; 150 horse-power; mean draft $8 \frac{1}{2}$ feet; l_{c} ngth of plating. The Implacabie has made 78 and the 48 feet; irmor pre 8 kinots per hour, in smooth water.

