please state through the columns of the Scientific American your views on the subject?

Charles A. Gardiner.
New York City, April 16, 1866.
[The science ot therapeutics-the effect of medicines on diseases-is one of the most difficult problems that has ever been undertaken by the human mind. Constitutions differ; what will cure one man will kill another, and very frequently people $r$ ecover in spite of medicines, instead of in consequence of them. It is only by the method pursusd by Lewis, Velpeau, and other modern investigators, that any truths in regard to the effect of medicines can be es tablished. They take large numbers of cases, divide them fairly in two equal portions, treat one-half with the proposed remedy, and leave the other half with. out treatment, and carefully record the result. We attach no wefght whatever to the loose and careless method which usually prevails in observing the effect of medicine on disease. In this case it is our opinion that the man would not have had the cholera, had there been no fumes of the cyanide of potassium around him. There are several persons in this city who are not in the habit of breathing those particular fumes, and who have, notwithstanding, escaped the cholera.--EDs.

## Hot and Cold Solutions.

Messrs. Editors:-In the Solentific American of April 7th, your correspondent "F. T. E" asks the question: "Why dees salt not dissolve in hot water in larger quantities than in cold?' He adds: "All other soluble substances dissolve more readily in warm than in cold water." "F. T. E." is mistaken in this last slatement. About twice as much lime may be dissolved in water at the freezing point, than at the bolling point. May it not be because the lime expands more with a given amount of heat than the water? In this case the pariicles of lime would be forced further apart by heat than the particles of water, and cold water would dissolve more than hot.
In your article headed "Solid floating on molten iron," jol say thai Dr. Rowell has observed that several other subst inces besides iron expand in solidifying, and you mention lead as one of them. I have tried the experiment according to your directions, and think that it is a mistake. The lead floated, it is true, but; it seemed to sink a little below the surface of the melted lead. I think it floated for the same reason that neediss or iron filings will float on water when not wet on top; that is, on account of the repulsion between the melted lead and the dry surface. If you pour meited lead into a mold, it will be seen to fall in on the surface at the instant of solidifying, slowing that it contracts.

Charles Janes.
Providence, R. I., April 7, 1866.

## Photo-lithograpy with Kalf-tone <br> (From the London Photographic News.)

The production of printing surfaces on stone, zinc, etc., by the agency of photography, has occupied the attention of experimentalists for many years, and in many respects a high pegree of success has been obtained. The process of Mr. Osborne, for the working of which a company has recently been formed in America, gives results in line and stipple which leave little to be desired. Mr. Ramage, of Edinburgh; Mr. Lewis, of Dublin; Col. James, and many others have alzo attained great excellence in the same direction. Messrs Simonau and Toovey, of Brussels, have attained some success in the production of half-tone, and the attempts of Col. James in the same direction have not been without promise. Still the fact remains, that no process for the actual production of photographs from nature by means of photo-lithography is in practical working, or has hitherto established a position, and that such a process remains an important desideratum, any means of meeting which would be hailed with a glad welcome by all concerned in the graphic arts.

Unless we are mistaken in our estimate of a series of specimens hefore us, by Messrs. Bullock Brothers, of Leamington, a process which they have recently patented bids fair to meet the long-felt want most successfully, and to render with a thir amount of delicacy, the true photographic gradation of negatives from nature. The subjects before us, consist
ing of landscapes with variety of foliage and architecture, are exceedingly excellent, and present all the grod points of a good photograph, perfect gradation and half-cone, and great brilliancy, differing little in general effont trom cood silper prints from the same negatives.
Messrs. Bullock have followed in paths already partially trodden, but have made such practical devialions and modifications as have led them to success where others have only failed. Their aim is to secure in the transfer a suitable grain, so as to obtain the kind of gradation possible ia lithography, wlthout producing a coarse or woolly effect. Among the various methods by which they propose to effect this end, the plan used in producing these examples seems to be at once the most practlcal and efficient. A transter paper is prepared with a plain solution of gelatin, and when this is dry a grain is printed on it from an aquatint plate. Paper so prepared can be kept in stock, and rendered sensitive when required by immersion in a solution of bi-chromate of potash. It is then ready for printing and transferring in the usual manner, and produces on the stone a photographic image, the continuous gradation of which is broken up into the stippled gradation of an aquatint plate. This is the broad principle; hut it admits of much ingenious modification in practice, which is so far effective that it produces the most successful and promising examples of photo-lithography with halftone. whim we hare yet seen.

## New Process for Indigo Dyeing.

Before it can be used for dyeing, indigo must be repdered soluble in alkaine and caustic solutions by being treated by a reducing body; by this reaction indigo loses its color, but alter being fixed on stuff and exposed to the air, it absorbs fresh oxygen and returns to its original color. Teis pracess, theoretically so simple, is praclically complicated by serious aificulties, and requires, on the part of the dyer, much practice and great dexterity. Thus, for instance, with indigo reduced by fermentation with vegetable matters, is a caustic solution, the various acids produced during the fermentation com'ine with the alkali, the liquid soon ceases to be caussic, and loses the property of dissolving the reduced indigo. To pemely this a rest quantity of aikali (soda, potash, or lime) must be adeled from time to time; but should an insufficient quantity be added, a portion of the reduced indigo remains undissolved, and soon decomposes ander the fermenting matter. It, on the contrary, an excess of alkali be adced, a certain quantily of white indigo is lost by its combining with potash, and forming an insoluble product.
According to M. Leuchs, of Nuremberg, all these objections are obviated by effecting the change from blue to waite indigo by pectine. Pectine exists in cousiderable quantities in the turnips of different species, in pumpkins, meions, etc., it may be extracted from these fruits, or they may even be direculs used to reduce indigo. The most simple process consists in heating 45 or 50 kilogrammes of the caustic lye to $75^{\circ} \mathrm{C}$, adding half a kilogramme of well pulverized indigo, then suspending in the vat a kind of basket of iron wire, containing from 8 to 10 kilogrammes of frosh turnips, cut into small pieces. Then heat gradually to boiling point; the indigo soon loses its color, and the solution decanted into special vats and diluted with water freed from air, will be ready for dyeing purposes. Contact with air must of course be as tar as possible avoided.
When the dye bath is exhausted it may strve for a fresh operation by adding indigo, a little caustic soda, and boiling it as above with a certain quantity of turnips.
On the iron wire trellis there will remain hardly 5 or 6 six per cent of the original quantits of turnips. This residue may used in paper making.
The simplicity of this new process may easily be proved by introucing into a closed tube a small quantity of indigo mixed with a few drops of soda or caustic potash, adding a small piece of turnip, and boiling; the indigo will rapidly lose its color, and redissolve and return to its original color by exposure to the air.
As tucnips are not everywhere cultivated, and during certain seasons are not to be procured fresh, the author bas found that the active principles may
der a pressure of two or three almospheres. C. Leuchs \& Co., of Nuremberg, now manufacture on a considerable scale an extract of turnips, 1 ktlogramme of which will dissorve cold 4 kilogrammes of indigo. -Annalen Chem. und Pharm.

## NEW INVENTIONS

Let-off Motion jor Looms.-This invention relates to a let-off motion which is governed by the force with which the batten meets the fabric in striking up, or in other words, by the density of the fabiic itself. The invention consists in the arrangement o? an angular roller shaft (or a shaft or roller supported by the arms of two cross levers), over which the warp runs, and on the end of which an arm is mounted from which extends a spring bar in combination with a lever carrying one or more pawls which gear into a ratchet wheel mounted on the end of the warp-beam in such a manner, that by the tension of the warp, produced by the latter in the act of beating up, the shaft or roller over which the warp passes, is depressed, and a longitudinally sliding motion is imparted to the spriug bar, and thereby the lever, which carries the pawls, is caused to swing back more or less in proportion to the force exerted by the batten on the fabric in beating up; and the pawls are made to take one or more teeth of the ratchet wheel, and as the batten recedes, the angular rock shaft, or its equivalent, returus to its orioinal position, and the lever which carries the pawls is movod back by the action of a spring or by the direct.action of the spring bar, causing the pawla to act on the ratchet wheel and to turn the warp beam in proportion to the number of teeth previously taken by said pawls. Samuel Estes, Newburyport, Mass., is the inventor.

Lamps.-The object of this invention is to correct inequality or unevenness in the light of lamps wicks, and also to clear the wick of cinders and of an y other matter which obscures the light or h inders the perfect burning of the fluid. It consists in placing around the top of the wick tabe a supplementary tube which is pivoted or arranged in such a way as to be capable of being vibrated to and fro, for the purpose of clearing or cleaning the wick ant the top of the wick tube from cinder and from any matter that adheres to the tube, and also of being placed in positions out of parallelism with the top of the wick tube so as to bring it into parallelism with the wick, when the latter has been trimmed to an angular line or has been forced up unequally by the wheel so chat one side is higher than the other. The supplementary tube is operated by a lever which extends through the side of the burner. Edosund Brown, Burlington, Vt., is the inventor.
Grate Bar:-The object of this invention is to farnislı a simple and cheap grate bar, protected by its construction, trom vertical or lateral warping rom the effects of pressure or heat, to take the place of the complicated and costly srate bars now in use for that purpose. Tbis object is accomplished in a simple and effective manuer, oy corrugating the rib or lower part of the bar with one or more longitudinal corragations. George O. Tupper, 23 Avingdon Square, New York, is the inventor.
Apparatus for Distilling Petroleum and other Liquads.-This invent:on relates to an apparatus conposed of a hollow drum and steam c il, wich are heated by superbeated steam, and surrounded or covered by a suitable jacket, in combination with a halical trough, conmenciag on the top of che steam drum and extending down tu its botiom, in such a manner that crude petroleum, or other liquils, let into the top end of the helical trough, are erradually heated and partially evaperated, and those parts of the liguids which reach the bratiom end of the trou oh, in a liquid state, drip duwn upon the highty-leared steam coil, where they instantly flash into vajor,s, and the distillation of petroleum, or otser liquids, can thas be conducced wilous interruption, and without danger of an explesion or conllagration. L. V. Fichet, 440 Broadwas, N:w York.

ONE of the strange properties of aluminium lironze is that after being forged it is aunealed by precisely the reverse treatment to which iron is subjected, as it is heated to dull redness and then plunged lito cold water.

## Improved spoke Tenoning and Felly Bor-

 ing MachineMany small wagon makers and wheelwrights scatterel about the country, will find the device bere illustrated a great advantage to them, since much more work can be done with it and with less exertion than by the common way.
The arrangument consists in applying a small machine to a bench or horse, as shown in the engraving, placing the wheel with the spokes in close to it, and then cutting the tenon on each spoke with $r>$ pidity and accuracy. In detail the machine consists of a casting, A, having a mandrel with an expanding cutter, $B$, on the end which can be set to cut tenons

Hardinge, a spiritual medium, by the ghost of his uncle, a worthy mechanic sometime deceased. Acting upon the hint of Miss Hardinge, he made the fastening, which is certainly a good one, and if done by the spirits, as Mr. Chase claims, is certainly no discredit to their inventive genius. People often dream of valuable inventions, but they do not always turn out so well as they dream they wiil.

## Album for Porcelain Pictures.

Mr. J. C. Spooner, photographist, of Springfield, Mass., has shown us a new album of his invention, designed for porcelain pictures. It has heretofore been impossible to preserve such pictures except in

It consists of a pasteboard disk, A, and a tin cap. B. The pasteboard fits tightly to the jar and is almost sufficieat in itse:t to secure the desired end, out in addition to this the cover or cap, A, is placed on top and a small quantity of cement or wax poured in over it. This immediately runs into the groove, $\mathbf{C}$, and makes a perfectly tight joint, while the air, pressing on the top of the cap with great force, keeps the pasteboard disk in close contact with the jar. By the use of the pasteboard the fruit is not injured, as is the case when brought in contact with india rubber, and no wax can enter the jar in sealing or unsealing. It is in all respects simple and reliable. For further infornation address J. M. Chrysler \&


## DOLE'S SPOKE-TENONING AND FELLY-BORING MACHINE.

of various sizes. The mavdrel has a series of grooves turned in it, which reeeive a lever, C, formed to suit them. This lever projects, as will be seen, and is intended to feed the cutter up to the spoke.

By turning the crank, D, and at the same time grasping the projecting lever, the cutter will be revolved and fed up, tbus torming a tenon in a short time. The leg of the casting, A, has a rack formed in it in which a pinion, not seen, works. This is to elevate the whole machine 80 , as to suit different hights, ana there is an adjustable rest, $E$, which accurately centers and holds the spoke while being acted on. In Fig. 2 the same machine is shown adapted to boring fellies, a bit being substituted for the cutter shown in Fig 1. There are siops on the adjustable rest at $H$, which the bit holder brings up against, thus limiting the depth of the hole. At the front of the vise block, I, which holds the felly are two guide irons, $J$, to keep the same in position when dowel holes are bored. These machines will be found very hands. The invention was patented by L. A Dole, on Oct. 31, 1865. Address Dole, Silver $\&$ Deming for further information, at Salem, Obio.

## WESTERN STEAM BOILERS.

Mr. William H. Giynn, an engineer of Dubuque, Iowa, writes us to say that his experience, in regard to priming of Western steam boilers and the malproportion of them, accords with that of Mr. Schaeffer, which was recently published in the Scientrfic Amertcan.
Mr. Glyn.s states that he has frequen'ly seen cylinders coated inside as it they were whitewashed-the result of priming; and, further, that many accidents also take place from the bursting of steam pipes. This, he thinks, takes place from a sudden checking of the water and steam, by the tall of the steam valve, which induces a sudden strain that the pipe cannot bear. He tlinks priming is also caused, in many instances, by opening the throttle too wide, when the cylinder is colc.. The steam will be condensed in the cylinder, forming a partial vacuum, which the water from the boiler naturally flows into. He also says that te finds no more trouble in keeping water in tubular boilers than in two flue boilers, it the tormer are clean.

A Spiritual Invention.
Mr. Frank Chase, of South Sutton; N. H., states that the blind fastener, illustrated on another page of this number, was revealed to him through Emma
frames, for unless special care is taken the transpa-
rency of the yon, No. 15
reture, which gives it its chief value, is entirely lost. Mr. Spooner makes bis albums with a olass front in one part of it, so that by sliding the picture back it can be readily held up to the light and sun and still be preserved from injury. Externally the album is bandsomely finished and is so construct. ed that a numer of pictures are alternately exhibited through the same glass. .

## CHRYSLER'S FRUIT JAR.

Many persons still use cement or wax in sealing fruit jars, and prefer that plan to others, as being cer-

tain under all circumstances. For this mode of closing fruit jars the cap shown in the engraving will prove a very convenient one.

## A SEVEN-TOOL LATHE

The London Artizan, of April, gives an illustration of a new lathe for turning crank axles. All machinists know thet there is a vast amount of work on these, and that it is necessarily slow and tedious. The body of the crank has not only to be cut out, but a vast a mount of turning on the bearings beside. Where this is done on a common lathe the job is a long while in it, and both employer and workman get sick of the sioht of it.
To expedite the process a lathe has been devised by Mr. Ramsbottom, of the Crewe Locomotive Works, England, which has a tool for every essential part. That is to say, the sides of both cranks are faced at once, making four tools and four slide rests at work on this part ; the two bearings are also turned up at once, and one of the ends is faced, making seven tools at work at one time.
It is stated that these tools work well together, and that the workmen have no trouble in attending to them. Of course, since the lathe operates well, comment is superfluous, but it will occur to all practical men that axles cannot be true turned in this way, for the spring of the throw, in passing over, would be likely to cause the tools to jump into the bearings and mar them.

Most, if not all the crank axles in the Crewe Works are now made from Bessemer steel, and by another peculiar machine the throw of the crank is cut out from the blank in about ten hours, which is quick work.
M. Tardirel states, that if a perfectly smooth and polished plate of glass, ivory, or metal is caused to rotate with great velocity in a horizontal plane, it does not communicate its own motion to a highly fixished ball which may be placed upon it.
[M. Tardirel need not have inconvenienced himse.. to have stated that.-Eds.

Good Idea.-On the Chemin chu ter du Nord, tubular stays have been used for locomotive fire boxes to some extent, the escape of water through the stay showing at once that it has suffered from corrosion. These stays are made by drilling through the solid bar,

