100

Solid Tron Floatiag on Molten Iron.
Messrg. Editors:-In No. 15 of the current rol nime you give an explanation of the reason why solid fron fioald on molten fron. You say that iron like woter, in changing from a liquid to a solid state, expanis. It this be so, why is it that all patterns for castings are mase onewighth of an inch to the foot larger than the casting is required to be? Surely, when the molten frou is poured into the mold it is fllsd completely fall, and by taking the caps off from any fiaak, you will see that the iron, in cooling, has shrunk afrag frow the sand one-eighth of an fnch to the roos in every direction. This being the case, a cubio toot of mollen iron sbould be lighter than a cobic foot of solld iron. You say the reason why a patieru must be made larger than the desired casting is that the iron hardens while it is very hot, and then in cooling, ebrisks. How do rou reconcile this? Does not tbe fron occupy less space when hard and cold tha the molten fron did? is Iroa when it is cooling not passing from a liquid to a solid state? and is it then boch shrinking and expanding at the came ime ? Does iron contime to exps nd so long as its temperature of the mass is falling? if not, at what point is it the lergest? Or, on the other band, if it sbriniss, at what point is it the smaliest? By an sおering through the columns of jour valuabis paper, gou will onlige youi Canadian readers.
N. C. B.

Gaaticook, Aprii 8, 1805

It egems, in this case, that a few of onr readers have fanded to sppreherd our meabing. Let us try again. Suppose-that we have cast iron at a temperature of 2200°, and now pour it into a mold. It will begio to cuol and will shrink in bulk, as may be seen rg the surface of that in the gate setting. It will continge to contract until it reaches the temperature of solidiacation, about 1700°. It now changes from the lighit to the solid state, and in undergoing this caange. it expabla. Ang founderyman may observe this expansion in the case of a casting Which bes a large sprue in proportion to lts bulk, so that the metal will contioue liquis in the gate-as the surface of the met. 1 in the gate will rise at the instant of solinifeation. Now we have the mold flled with sold cast fron of jost the same size as the paltern, but this iron is at a temperature of some 1700°, and we let it cool down to a temperature of 70°. In this cooling, it shrinks about one-eighth of an inch to the foot; berce the necessity of making the pattern larger than the castlag. Bat this contraction !s vat equas to the expansion which takes place in the change from the liquid to the aolid state. The pattern must be made larger because it is made for solld hot iron. - Ens.

A Coin and Feaiher in Vacmo.

Messre. Editozs:-I have noticed in sour valuable paper, under the head of "Notes and Querles," In apswer to L. ह. B., of S. C., a statement that is exactly the reverse of that which I had supposed was correct. You say, a plece of metal will weigh more than a feather in vacuo. Neil Aruotl, M. D., in his "Elamets of Phyoles," Vol. I., page 346, says: "Asmall weighing keam, having attached to its oppesite ends pisces of cork avd lead which equipoise in the air, if placed under the receive; of au air pump quicbly exnibits the cork preporderating." As I liave no mears of trging the experimert I can not dumnnstrate the fact. Car you give me the philosophy of it?

Jas. S. Conant.
Jopria Village, A pril 13th, 1866.
[The coriespocdent to whom we replied, had an idea liat the attraction of the earth is magnetism, and in nreof of bis lueory he stated that a coin and a feather, if weighed in a vacuum, would have pre cisely the sawe weight, though in the air the cois, of course, would te huavier. In the case of a feathe and piece of netal, which are of eqral welght in the atmospdere, the one having the $1: r g e s t$ volume is of conrse bnoyed up more in the air, and on removing the buoying fluid that one wlil prepopderate.-EDs.

Hardening Dies

Messrs. Editors:-Please inform me the way to temper a steel die so it will not crack off at the edge in tempering. I'he dies are about two and a balf inches in diameter, one inch thick, w.th the edges turned to one-eiphth of an inch thick. I have had edges to ey hal' off sometimes, and some neper crack at all. State whether I should have a composition to temper in.

James Ayars.
[The reason that a great many dies crack in bard oning is, that they are hammered to mach. A prac tice la gainiog ground daily among our best machin. ists, of making dies directly from the bar or plate, where the size rermits, without forging them at all. Dies so made are invariably safer in bardening than when hammered, and they last auite as well. Stee that is hammered, is, in most cases, of unequal density, so that the expansion and contraction in hardening is likely to destroy work. The twist crills of which so mavy are sold, are never hammered at all. and the manufacturers assure us that they never lose one by springing or breaking in tempering. Compositions, or baths, as they are sometimes called, may be of use in many cases, but cold waier is as goo das anything for gevera! worts. Cyanids of potassium, strewed over the die when hot, and the same planged ints water, will give a superior bardness to a die. EDg.

Water Wheels for the South

Messrs. Edítors:-We have been favored several tîmes by your biodness in turnisbing information on machinery, the address of manufacturers, etc, etc. and we feel much obliged by your attentions. Our Soatbern country is much in want of all descriptions of iabor-saving apparatus, all useful inventions, etc.
Jast at presont we bave pressing demands for a superior kiod of patent cast-iron horizontal water wheel; one that possesses a concentration of power at the same time it economizes the supply of water; and 15 , withal, of cheap and simple structure.
We are not familiar with the merits of the severa kinds heretorore used, known as the Jonval, turbine, Tuttle, Stephenson, and otbers, but believe there are some which as? highly commended as certainly superior to all those, and are of comparative late introduction.
Whil yon be pleased to inform ue in particular on the matter and give us the address of proprithore aud manutacturers, if not inconvenient to gou. The bravch of busivess espccially under my charge ber is that of machieers, etc.
W. G, Atrinson

Richmond, Va., Auril 10, 1866.
[There is a great difference of opinion among prac tical men in regard to the relative merits of the differ ent kind of wheele. We will not undertake to decide the matter, but wunld advise the different matufacturers to send to our correspondent such facts and figures as will enable him to decide the question tor hinaself.-EDDs.

The Eong and Ehe Short of it.

Mersrs. Editors:-In your last issue in your "An swers to Corrpspoudenis," y ou say that a long screwCriver gives no more power than a short one if the handle is no larger. For the sake of apprentices who can start a screw with the former which they canvot with the latter, allow me to explain what I believe to be the true principle of the "power." It is simply this: the depth of the slot allows them to slightly ean the driver, thus obtaining a longer lever rilh the longer driver.
G. D. M.

Farwington, Me., April 13, 1866
[Screws are cot got out by prying cn thern with a lever. It our correspondent will take a ecrewdriyer a foot long and anotbei one six inches, with the same handle ov each, be will do just as much work with one as with the otbet:-Ens.

Several Questions.

Messins. Edirors:-Will you please answer the following questions through the medicm of your raluable paper? Will it require more power to raise water to a pump which is twenty feet bigher than the touniain, than it will 10 one that is only ten, except what is required to overcome the additional frictlon ot the water in the pipe? A man who puts in a good many pumps, is a good mechanic, and reads the Selentafic ambrican, tries to make me believe tha

It takes no more power in one case than in the other. His idea is this: With a perpandicular pipe twenty feet long, with the lower end immersed in water, and connected with a pump at the upper eud, it takes no mora power to work the last stroke before water strikes the piston of the pump, than it doos at the first one, when the water begins to rise. I would inquire how many degrees of heat an oven must be to bake bread? I would lite to know if it has to be hatter than saturated steam at 30 poucds pressare? Is superheated steam hotter at 30 pounds pressure than saturated?
I bave found by experience that a steam pipe cov ered 30 as to exclude the air, will rust through from the outside in from three to six months, according to the thickness of the pipe. A two and a halt iach pipe, laid under ground in a wooden box, packed with fine charcoal was completely honey-comoed in one winter-length of pipe 30 feet. Why is it?

Lawrence, Mass., April 8, 1866.
[It takes just twice the power to raise a given quantity of water 20 feet that it does to ralse it 10 feet. The temperature for baking bread, we believe, is about 220°. The temperature of saturated steam at 30 pouvds pressure is 274°; that of superheated steam at the same pressure, is higher. Iron rusts in moist air more readily than in dry air.-Ens.

Taps.

Messrs. Editors :-This is the second letter I have written on the same subjoct-namely, taps. The first letter I sent you was not published, and it is probable this one will share the same faic. Tbat makes no difference with me, however; your paper is worth to me all I pay for it and more besides. There is ons thing sure-the apprentice is in a fair way to gain the desired information on the tap ques. tion. Your comespondent, M. N., in the Scientific AMERICAN of April 14tb, throws no new light on the subject, if we except the taps being larger where it first enters the hole, which is a detriment in many cases. For instance, it will not start nearly so well ; especially in cast iron. I would also ask M. N. how many taps in general are nsed in a machine, for there is a strong probability that the apprentice mentioned was not an apprentice to a bolt maker. M. N.'s theory of turning the tap larger where it tirst evters, and then filing it off tapering, which makes a wider cutting edge at the start, pqualizing the cuting and strain, is rigbt, but taps have been made thus or years where I work. But cau you always get ove made in that way out of a hole? For in stance, in tapping a casliog, lnstead of a nut, M. N. will find his tap yot always come out the same road t we t in, especially when bolt makers bave groand it. Yours,
P. McCormick.

Newark N. J., April 13, 1866.
[We admire our correspondent'a perseverance and zpirit in writing again, and colncide with his riews in general. The question of taps, and tueir adapta tion 10 lifferent works is a wide one, and not to bo rettiet, in one or two letters to an editor, of one or two answers to correspondents. Comparatively few laps are used in macbines, and when it comes to runuing down a tap $1 \frac{1}{2}$ inches in diameter in cast iron, and $1 \frac{4}{4}$ in wrougbt iron (as iss daily doue on marine work) it is a matter of some consideration whether it cuts and clears. Many persons wlll say that a tap must never be turned back, as it breaks the teeth. So it does, if they are not made right, but how is one to get a full or a fair thread withour doing so? As we stated first, tools that will cat like razor: are easy to make, but those that are duranle and conorm to circumstances, are the most satislactory. -Eins.

Poperar Remedies for Disease.

Messra.-EDItors:-As tha cholera is anticipated here this summer, it is of the greatest impurtance that any preventive or cure should be made known to the public. An old gentleman who has attended a great may persons sick with the cholera, and who in his business uses the cyanide of potassium, the air in the room in which he works being at all times thick with the fumes or evaporations from it, states that if it had not been for the cyanide of potassium, he would have died long ago of the cholera, and bat he is of theopinion the.t it can be used to great advantage as a preventive and cure. Will you
please state through the columns of the Scientific American your views on the subject?

Charles A. Gardiner.
New York City, April 16, 1866.
[The science ot therapeutics-the effect of medicines on diseases-is one of the most difficult problems that has ever been undertaken by the human mind. Constitutions differ; what will cure one man will kill another, and very frequently people r ecover in spite of medicines, instead of in consequence of them. It is only by the method pursusd by Lewis, Velpeau, and other modern investigators, that any truths in regard to the effect of medicines can be es tablished. They take large numbers of cases, divide them fairly in two equal portions, treat one-half with the proposed remedy, and leave the other half with. out treatment, and carefully record the result. We attach no wefght whatever to the loose and careless method which usually prevails in observing the effect of medicine on disease. In this case it is our opinion that the man would not have had the cholera, had there been no fumes of the cyanide of potassium around him. There are several persons in this city who are not in the habit of breathing those particular fumes, and who have, notwithstanding, escaped the cholera.-EDs.

Hot and Cold Solutions.

Messrs. Editors:-In the Soientific American of April 7ib, your correspondent "F. T. E" asks the question: "Why dees salt not dissolve in hot water in larger quantities than in cold?' He adds: "All other soluble substances dissolve more readily in warm than in cold water." "F. T. E." is mistaken in this last slatement. About twice as much lime may be dissolved in water at the freezing point, than at the bolling point. May it not be because the lime expands more with a given amount of heat than the water? In this case the pariicles of lime would be forced further apart by heat than the particles of water, and cold water would dissolve more tban hot.
In your article headed "Solid floating on molten iron," jol say thai Dr. Rowell has observed that several ether subst inces besides iron expand in solidifying, and you mention lead as one of them. I have tried the experiment according to your directions, and think that it is a mistake. The lead floated, it is true, but; it seemed to slink a little welow the surface of the melted lead. I think it floated for the same reason that needlss or iron filings will float on water when not wet on top; that is, on account of the repulsion between the melted lead and the dry surface. If you pour meited lead into a mold, it will be seen to fall in on the surface at the instant of soliditying, slowing that it contracts.

Charles Janes.
Providence, R. I., April 7, 1866.

Photo-lithograpy with Kalf-tone。
 (Prom the London Photographic News.)

The production of printing surfaces on stone, zinc, eic., by the agency of photography, has occupied the attention of experimentalists for many years, and in many respects a high pegree of success has been obtained. The process of Mr. Osborne, for the working of which a company has recently been formed in America, gives results in line and stipple which leave little to be desired. Mr. Ramage, of Edinburgh; Mr. Lewis, of Dublin; Col. James, and many others have alzo attained great excellence in the same direction. Messrs Simonau and Toovey, of Brussels, have attained some success in the production of half-tone, and the attempts of Col. James in the same direction have not been without promise. Still the fact remains, that no process for the actual production of photographs from nature by means of photo-lithography is in practical working, or has hitherto established a position, and that such a process remains an important desideratum, any means of meeting which would be hailed with a glad welcome by all concerned in the graphic arts.

Unless we are mistaken in our estimate of a series of specimens hefore us, by Messrs. Bullock Brothers, of Leamington, a process which they have recently patented bids fair to meet the long-felt want most successfully, and to render with a thir amount of delicacy, the true photographic gradation of negatives from nature. The subjects before us, consist-
ing of landscapes with variety of foliage and architecture, are exceedingly excellent, and present all the good points of a good photograph, perfect gradation and half-cone, and great brilliancy, differing little in general effont trom cood silper prints from the same negatives.
Messrs. Bullock have followed in paths already partially trodden, but have made such practical devialions and modifications as have led them to success where others have only failed. Their aim is to secure in the transfer a suitable grain, so as to obtain the kind of gradation possible ia lithography, wlthout producing a coarse or woolly effect. Among the various methods by which they propose to effect this end, the plan used in producing these examples seems to be at once the most practlcal and efficient. A transter paper is prepared with a plain solution of gelatin, and when this is dry a grain is printed on it from av aquatint plate. Paper so prepared can be kept in stock, and rendered sensitive when required by immersion in a solution of bi-chromate of potash. It is then ready for printing and transferring in the usual manner, and produces on the stone a photographic image, the continuous gradation of which is broken up into the stippled gradation of an aquatint plate. This is the broad principle; hut it admits of much ingenious modification in practice, which is so far effective that it produces the most successful and promising examples of photo-lithography with halftone. whim we hare yet seen.

New Process for Indigo Dyeing.

Before it can be used for dyeiag, indigo must be repdered soluble in alkaine and caustic solutions by being treated by a reducing body; by this reaction indigo loses its color, but alter being fixed on stuff and exposed to the air, it absorbs fresh oxygen and returns to its original color. Teis pracess, theoretically so simple, is praclically complicated by serious aificulties, and requires, on the part of the dyer, much practice and great dexterity. Thus, for instance, with indigo reduced by fermentation with vegetable matters, is a caustic solution, the various acids produced during the fermentation com'ine with the alkali, the liquid soon ceases to be caussic, and loses the property of dissolving the reduced indigo. To pemely this a rest quantity of atkali (soda, potash, or lime) must be added from time to time; but should an insufficient quantity be added, a portion of the reduced indigo remains undissolved, and soon decomposes ander the fermenting matter. It, on the contrary, an excess of alkali be adced, a certain quantily of white indigo is lost by its combining with potash, and forming an insoluble product.
According to M. Leuchs, of Nuremberg, all these objections are obviated by effecting the change from blue to waite indigo by pectine. Pectine exists in cousiderable quantities in the turnips of different species, in pumpkins, meions, etc., it may be extracted from these fruits, or they may even be direculs used to reduce indigo. The most simple process consists in heating 45 or 50 kilogrammes of the caustic lye to $75^{\circ} \mathrm{C}$, adding half a kilogramme of well pulverized indigo, then suspending in the vat a kind of basket of iron wire, containing from 8 to 10 kilogrammes of frosh turnips, cut into small pieces. Then heat gradually to boiling point; the indigo soon loses its color, and the solution decanted into special vats and diluted with water freed from air, will be ready for dyeing purposes. Contact with air must of course be as tar as possible avoided.
When the dye bath is exhausted it may serve for a fresh operation by adding indigo, a little caustic soda, and boiling it as above with a certain quantity of turnips.
On the iron wire trellis there will remain hardly 5 or 6 six per cent of the original quantits of turnips. This residue may used in paper making.
The simplicity of this new process may easily be proved by introucing into a closed tube a small quantity of indigo mixed with a few drops of soda or caustic potash, adding a small piece of turnip, and boiling; the indigo will rapidly lose its color, and redissolve and return to its original color by exposure to the air.
As tucnips are not everywhere cultivated, and during certain seasons are not to be procured fresh, the author bas found that the active principles may
der a pressure of two or three almospheres. C. Leuchs \& Co., of Nuremberg, now manufacture on a considerable scale an extract of turnips, 1 ktlogramme of which will dissorve cold 4 kilogrammes of indigo. -Annalen Chem. und Pharm.

NEW INVENTIONS

Let-off Motion jor Looms.-This invention relates to a let-off motion which is governed by the force with which the batten meets the fabric in striking up, or in other words, by the density of the fabiic itself. The invention consists in the arrangement o? an angular roller shaft (or a shaft or roller supported by the arms of two cross levers), over which the warp runs, and on the end of which an arm is mounted from which extends a spring bar in combination with a lever carrying one or more pawls which gear into a ratchet wheel mounted on the end of the warp-beam in such a manner, that by the tension of the warp, produced by the latter in the act of beating up, the shaft or roller over which the warp passes, is depressed, and a longitudinally sliding motion is imparted to the spriug bar, and thereby the lever, which carries the pawls, is caused to swing back more or less in proportion to the force exerted by the batten on the fabric in beating up; and the pawls are made to take one or more teeth of the ratchet wheel, and as the batten recedes, the angular rock shaft, or its equivalent, returus to its orioinal position, and the lever which carries the pawls is movod back by the action of a spring or by the direct.action of the spring bar, causing the pawla to act on the ratchet wheel and to turn the warp beam in proportion to the number of teeth previously taken by said pawls. Samuel Estes, Newburyport, Mass., is the inventor.
Lamps.-The object of this invention is to correct inequality or unevenness in the light of lamps wicks, and also to clear the wick of cinders and of an y other matter which obscures the light or h inders the perfect burning of the fluid. It consists in placing around the top of the wick tabe a supplementary tube which is pivoted or arranged in such a way as to be capable of being vibrated to and fro, for the purpose of clearing or cleaning the wick and the top of the wick lube from cinder and from any matter that adheres to the tube, and also of being placed in positions out of parallelism with the top of the wick tube so as to bring it into parallelism with the wick, when the latter has been trimmed to an angular line or has been forced up unequally by the wheel so chat one side is higher than the other. The supplementary tube is operated by a lever which extends through the side of the burner. Edosund Brown, Burlington, Vt ., is the inventor.
Grate Bar:-The object of this invention is to farnislı a simple and cheap grate bar, protected by its construction, trom vertical or lateral warping rom the effects of pressure or heat, to take the place of the complicated and costly grate bars now in use for that purgose. This object is accomplished in a simple and effective manner, oy corrugating the rib or lower part of the bar with one or more longitudinal corragations. George O. Tupper, 23 Avingdon Square, New York, is the inventor.
Apparatus for Distilling Petroleum and other Liquads.-This invent:on relates to air apparatus conposed of a hollow drum and steam c il, wich are heated bo superbeated steam, and surrounded or covered by a suitable jacket, in combination with a halical trough, conmenciag on the top of he sterm drum and extending down to its botiom, in such a manner that crude petroleum, or other liquils, let into the top end of the helical trough, are erradually heated and partially evaperated, and those parts of the liguids which reach the brattom end of the trou oh, in a liquid state, drip duwn upon the higbly-laared steam coil, where they instantly flash into vajors, and the distillation of petroleum, or otser liquids, can thus be conducted willous interruption, and without danger of an explesion or coullagration. I. V. Fichet, 440 Broadwas, N:w York.

One of the strange properties of aluminium bronze is that after being forged it is annealed by precizely the reverse treatment to which iron is subjected, as it is heated to dull redness and then plunged lito cold water.

