Scirice and grt.

Trial of Fire-Engines.

[On Christmas-day, in this city, Messrs. Lee \& Larned brought out their two steam fireeugines, the "J. C. Cary," ${ }^{\text {Pllustrated on page }}$ 89 of the prosent volume of the Senencrime Americ, were trien] says the Nev York Tribune, [at a pole which is 165 feet in hight, surmonnted by a ball and cap, the former 171 feet from the ground, the latter 179 feet 10 inches. The perfurmance of the "Cary" exceeded any yet aclicved by any fire-engine, whether worked by hand or steam power. She threw a twoinch stream to the top of the cap, and a $1 \frac{5}{8}$ inch fully 25 feet above it, making the total hight not less than 205 feet perpendicular. Playing horizontally, she threw a $2 \frac{1}{2}$ inch stream, through an open butt, a distance of 209 feet. At her highest speed, she made 264 revolutions per minute, discharging upward of 1,200 gallons of water. The "John G. Storm" is but just completed, and bad on this occasion her first or experimental trial. Her engincs and pump are the same as those the "J. C. Cary," but her boiler power and her weight cousiderably less. She threw a 15 inch stream to the ball, a hight of 171 fect, which is fully equal to the performance of the "J. C. Cary" on its first trial. TThe engines propelled themselves from the Novelty Works to the place of trial, by the way of Twelfth street, the Bowery and Canal strcet, a distance of three miles, carrying each about ten men in 2.5 minutes. T Both engiacs performed in all respects to the satisfaction of the builders, and of the various representatives of the Fire Department and of the insurance companies who were present. They were in clarge of the Exempt Engine Company, Zophar Mills, Foreman. The new engine is named after the President of the Lennox Insurance Company, who has borne a leading part in securing the introduction of steam fire-engines. Agricultural inprovements Wauted.
A correspondent-T. Waters, of Shopsspring, Tern--wishes us to call the attention of inventors to harrows and portable steam-engines for furmers. He states that a two-horsc harrow, so constructed as to have a lateral in conjunction with its forward movement, would be a great benefit to agriculturists, and at the same time be the source of a goodincome to the inventor." In reference to the dimensions, and the cost of such a harrow, he says:--" We find that a harrow with a frame of four and a half or five feet wide, made with two sections hinged togother, and teeth six iuches apart, is about as much as two horses can operate on our lands. If it had a side motion of four inches, for every six inches forward, it would not be liable to choke, and it would pulverize the soil in a superior manner. It should not cost more than $\$ 25$, be very strong, have teeth 14 inches long, and one inch square at the top." He also says :-" We want a lighter and superior steam-engine for agricultural purposes than any which has yet been brought before the public."
With regard to portable steam-engines, there can be no difficulty on this hoad. There are engineers who can and will build engines of any size to suit the demands of agriculturists. The great object of care in a steamcngine should be the boiler; it should be made of the best materials, so as to be strong and perfectly safc under all circumstances.

A Cheap Filter.

In some situations spring water cannot be obtained, hence rain water is employed for all domestic pusposes. To render it fit for drinking and cooking, it requircs to be filtered, as showers carry down insects and their ova from the atmosphere and dust from the roofs upon which they fall. It is best to purify rain
purpose a good filter can be made by any person at the cost of only a few shillings. The way to do this is as follows:-Construct a
tolerably large and stout wooden box, with a hole in the bottom or at the side near the bot tom, and in connection with a pipe leading into the cistern; nail a coarse cotton or linen cloth over its bottom inside, and then fill it up to within three inches of the top with layers of clean gravel, sand, and charcoal, and over the top of these secure a stont cloth. Into this box lead the pipe, and as the rain passes through it to the cistern, it will be purified and fitted for drinking or any other purpose. The top cloth of this filter can be easily removcd and frequently washed. At a little extra cost, this filter may be made so as to rotate on an axis to be turned upside down, and washed out by making clean wate 1 rush from its bottom through to the top. It is necessary to make such filters somewhat large to carry off water rapidly during heavy showers.

Mille's, Pre
The many appliances for lifting heavy weights with a small amount of power that are in general use, seem almost to leave no room for any further invention or improvement, but our illustration fully proves the contrary, and shows that improvements valuable and complete have recently been made Fig. 1 is a view of an improved wine press for expressing the juice from grapes, or for squeezing the whey from cheese, or any suitable purposes, and Fig. 2 shows a section of a jack press for lifting heavy weights, on the sme principle.

We learn from a Philadelphia exchange that recently a man weighing 156 pounds lifted, with the aid of one of these presses, the great weight of 37,332 pounds, merely by the application of his strength to the lever 20 inches long, and the press weighed only 45 pounds.
A are four posts, supporting the frame, B, in which is secured the cylinder, C , that contains the vertical screw, J, nut or grooved top, i, and horizontal screw, I, that rotates it, power beiug given to I by the handle, crank, or lever, D. To the lower end of the nut, K, in which. T works, and that is fitted into the case, C, is attached a hand wheel, L, and follower, F , that presses the contents of the press or casc, G, that is attached to the bottom plate of the frame by spring catches, H. C^{\prime} (Fig. 2) shows the shape of the top of the jack press when it is used to lift.

The operation is as follows:-Grapes or any other substance to be squeezed, are placed in G, and the hand wheel, E, turned This moves K around J, and brings the fol lower, F , quickly upon them, and as long as convenient this method of pressure can be adopted, but when it becomes too hard work, the crank, D, is moved, and the screw, J slowly rotated by the screw, I, when the follower is pressed down slowly, but with great force. These presses are suitable for hand or power; and for lightness or power, for lifting jacks or presses, they are as near perfection as wc have ever scen
The inventor and manufacturer is D. L. Miller, of Madison, N. J., who should be addressed for further information. Specimens are on exhibition at the Fair of the American Union, No. 620 Broadway, for the inspection of mechanics, \&ce. Patents were obtained for the jack, Dec, 15t, 1857, and for the press Aug. 7th, 1858.

Roesler \& Lrey's Self-Lighting Lantern.
There is not a sailur who has not experienced the difliculty of lighting the bow, stern, or binnacle lights, some dark and boisterous night when
\qquad
And there are few farmers who have no wished for some safe moans of lighting lantern in a barn, among hay or fodder, without the danger of setting it on fire. Such a lamp or lantern is the subject of our illustration.
Fig. 1 is a perspective view, and Fig. 2 diagram of the working parts.

A is the lantern, and B the handle on the back, C. The lamp, D, is placed on the bot tom of the lantern, so that the extinguisher I, will fall directly over it, and put it out when operated for that purpose. To the door, C , a match case, E , is attached, that is slightly enlarsed at its center, P , to admit of a spring to continually feed the matches to the bottom plate of the box. To this mateh box, E , is hinged a bell crank, N , that is kept in the position shown in Fig. 2, by the spring, 0 , and to whose lower end is connected by a slot a small piece, extending through a slot between the bottom plate of E, and the case itself, and the other side of the small piece fits in a slot iu a corresponding bell crank, \mathbf{N}. To the top of N is attached the rod, with its
knoh, M, that projects outside the care, and a ood, M^{\prime}, that presses on thic pallet, L , on the axle of the extinguisher, that is supported by bearings, J. At the front of the match c es are two serrated jaws, $Q \quad Q^{\prime}$. A bent $\leq t a f$, F, passing through a spring case, G, is alvo placed in the lantern; this, when the knob, F, is pressed, passes on the pallet, K, and throws the extinguisher on to the wick, putting out the light.
The operation is as follows:-The match case being filled with matches and the lamp rimmed, the knob, M, is pressed, the crank, N , forces the bottom matcl through the serrations, $Q Q^{\prime}$, and so ignites it, and holds it while it is lighting the lamp, at the same time the picce, M^{\prime}, has pressed on the pallet, L, and thrown the extinguisher off the lamp. The lamp being lighted, the thumb or finger is taken off M , and the spring, O , brings it back, and another mateh falls down ready to light the lamp arain, when necessary
This simple and very effective contrivanco for lighting lanterns in any weather and any position, and cxtinguishing them witheat opening the door, is the invention of Mesors. Focsler \& Frey, of Warsaw; fll., and was patented May 18, 1858. Any iufurmation concerning the patent (which they wish to scil) can be outained by addressing them at thio above place, Box 464.

Porcelain Pictures.

A fine opportunity for somebody to make a fortune would seem to lic in the invention of some machine or process for producins porcelain pictures. We allude to the flat plates of porcelain, sold in the china and faucy stores, which, when held between the eye and the light, exhibit pictures more or loss beautiful, according to the design. There is an cxtensive and rapidly increasing demand for these articles; but at present the entire supply is imported from Europe. We shall probably allude to the subject again.

INVENTORS, MILLWRIGHTS. FARMERS añ MandFactureris.
FOURTEENTII YEAI:
PROSPECTUS OF THE
SCIENTIFIC AMERTCATS.
This valuable and widely circuluted journan outtred upon it
It is an Illustrated Periodical, deroted to teg phomm a gation of information relating to the various Necharis cal and Chemidal abtb, Miandragtures, Agricherfrez, all interesta which the lighty of Praotion scrienos in calculated to advance.
All the most valuable patented discoveries aro ds
 Repertory, where the inventormay learn what has bee done before him in the same field whech he is exphrinet and where he may pubiish to tie world a knowledge of Ris own achiovements.
Reports of American Patents granted are also vat hished every week, incluaing oficial condes of nul the
Patent Clanas. Theso Patent Claimes arc furnibine from the Patent Othice Recorưs extressly for thia paper, and publighed in the SCIENTIFIC AMIERICAN in advanace of all other putblications.
Mechanics, Inventore, Engiuecre,
Mechanics, Inventore, Engiuerre, Clemiste, Mazuof life, will find the SGIENTIFIC ABERICON to bor ff gratat alanu in their returctive callinge. Itte councels
 nowledge, the value of which is beyoud pecuniary TERMS OF SURSCRII'ION-Tv
or One Dollar for Six Mlontis.

country
MUNN \& Co.. Publishrors aud Pntent Agents,
No. 13s rulton stroet, New York.

