A Perpetual Motion Humbug

Messrs. Editors :--I have a pendulum in motion whose oscillations are maintained by magnetism induced by the pendulum carrying a helix past the poles of permacent a magnet, at the instant after its reaching the center of oscillation. The magnetic influerce is, of course, only momentary, but is suffcient to drive the pendulum beyond its opposite center and thus maintain a constant vibration. Is this perpetual motion? Is it uew to you or your readers:

Worcester, Mass., A pril 5, 1866.
[If we understand the description, the statement is simply incredible. As there is an appreciable, though extrembly mizule portion of time requirecl to induce maguetism in a helis by a permauent maguet. the pendulum would be deawn backward in ils ascent more poxerfully than it would be drawn formard in its desceat, and thuy its motion would be retarded. It would therefore stop soover in consequence of the preserice of the magnct.-Lids.]

Nevt Things in France.

ABORTION.

Wrobore te gotre. M. Lager announces to the Acaldmy of Sciences that he has produceld a number of thyroid eulargements in rata by iujecting metallic sulphases muler the skin. He has discovered that the pse of sulphates will produce abortion, a fact, I believe loug kuowy in Enslaud, where large doses of sulphate oi potash have beer employed for the purpose

GRAFTING: RATE.
Rats are us pleutifnl in Taris as I oudon, and they are olten the fictions of physiological experiments M. Bert, for example, gaidel the prize in experi meatal physiolovy for renofing their tails from heir natural pusition, aud grafting them hpon all sorts cf odd places tae middle of the back of the animal for instance, ard even in the cavily of the perton eum. AL Brat made one very curious observation He succerded to unting the small end of the tail to the body, and found out that the large extremity; which was free, recoyrred its sensibility, thas showing that the nerves will convey seusation in a direction in ferse to that in which they act under noruad circurn stances.

SEETAG THE INSIDE OF ONE'S OWN EYE:

By the use of endoscopes, laryngoscopes, and ophtherlmoseopes the medical man is enabled to get a sight of many things shut out trom ordinary view. M. Houdin has added another to thears ingenious in struments-tine iridoscope-luy the aid of which an individual is able to see all that is going on in his own eye. It is simply an opaque shell to cover the ye, plerced in the center with a very small hole. On lookiug through steadfastly at the sky, or at any diffused light the observer may watch the tears streaming over the globe, and note the dilatation aud contraction of the iris, and even see the aqueon humor powed in when the eye is fatigued by a long obsorvation. It is needless to say that with the aid of this instrument a man can easily find out for himself whether he lias a cataract or not. If he has he will only see a sort of veil covering the luminous disk, which is seen by a healthy eye. The irstrument is certainly simple and curious, and will no duubt excite attention in those who are anxions to know more of themselves. An "iridoscope" may be readily extemporizod by making a hole in the bot tom of a pill-box with \mathfrak{h} fine veedle.

POEONING HY PMARAOLI's SERPENTS.
We have had here two or three cases of poisoning in young men who have been occupied in making up Pharaoh's serpents. No one had dicd, but one has been seriously ill.-Corrspondence of the Chemical News.

protected lead pipes.

A correspondent writes from Germany that the Water-works of Leipsic have recently been completed, and adds that the leaden pipes employed for house service have been protected by Schwartz and De Wilde's process. Our readers will remember that this is a process for obtaining on the inside of the pipe a coating of sulphide of lead, which is unacted on by water, that attacks lead itself.-Chemical Neios.

English Ironclads.
The following is a list of the ironclads we now possess, either actually in commission or nearly ready for sea, and exclusive of those which, like the Hercules, etc., have not long been begun:-

The Times puolishes this list, wijict si right, and adds a wiah "that the Admiralty would alopt the French system of fistening on the plates with what are termed wood screms instead of througl, buts," which is wrong; gring on to say that "tha latter weaken the plate very considerably and dis not holl it on at all, whereas the trials made will the Frencb system of fustening at shoebury showed it to be eo superior to ours as to be literaly above any degrea of comparison." This passage afforls another excellent example of the blunders which people commit when they write about that which they do not understand. It is per:ectly trie that the word hol:s relerevin to din nothreak, and that for the best of all reasons-the wood did not afford znfficient hold to overcome their tenacity, the bolts drem bodity ot of the timber, but the destruction of the target was none the less complete because they did not actuc liy break.--London Engineer:

Composition of Alloys.		

Lead.		ainpos	Lilio	of	Alloyn. foins of	Puirst
120 parts.	140	parts.	120	ptrts.	$\begin{aligned} & \text { Fupton, } \\ & \text { i } 30^{\circ} \mathrm{C} . \end{aligned}$	Soldighration $112^{\circ} \mathrm{C}$ $\substack{120}$
14.5	14.5	*	100		140	129
150	150	\because	75	${ }^{6}$	1.50	1.35
150 い	150	\bullet	50	\because	160	150
170	180	"	35	"	170	16.3
10	190	\cdots	30	\cdots	180	16.5
140	1.55	-	30	"	$1!0$	1:80
200	185	-	30	"	$\because 00$	180
200	180	*	30	\cdots	210	180
2.10	150	\cdot	30	"	220	180
207	194	"	30	.	180	180

It is geverally to be reutarked that the fusion point of ad alloy is uot in relation to the proportions o the metals which eater intu its composition. The alloy of 150 parts at lear, 150 parts of tin, and 50 parts of bismuth (broportiona eqitionty corresponding to 6 atoms of lead, 12 atous of tiv, and 1 atom of bismuth), is one of those which solidify most regularlf- that is to say, that no one of the notals enteriner into its compo sition crysta!lizes separately on cooling, and thar the alloy remains perfectly homogeveous.
It way be observel that the poitit of nobdication of the last tive alloys on this table is consiaut at 180°. When these aliojs are melted and hed allowed to cool, small crystals form al $220^{\circ}, 210^{\circ} 200^{\circ}$, or 190°, accordiug to their composition, aud when the tem perature has desccaded to 180°. the whole mass solit fioz. It is noticealle that during the whole time of solidification the temperaturs remaius at 180°, aud that the mercury of the thermometer again begins to descend only when every part of the alloy has become solld.
Another alloy remaining very homogencou?, and unvarying in temperature during solidification, is that composed of 207 parts of lead and 294 parta o tin (2 equivalents lead to a equivalonts tin). This
alloy melts as 180°, and solidifies at precisely the same temperature.
In these two alloys, which have the most usefu properties, the different metals are united in atomic proportions, which seems to prove that, to obtain a good alloy, it is necessary to take into consideration the atomic weight of the metals composing it. It is beyond a doubt that such alloys, remaining so homogeneous during solidification, are possessed of valuable propertics not belonging to other and less homo geneous alloys. This question is certainly of great interest in the manufacture of printing type, and for similar purposes; and deserves to be thoroughly studied.-Bulletin de la Societe Chimique and Chem ical News.
[ft will be observed that the temperatures are given in the centigrade scale. To reduce them to Fahrenheit degrees, multiply by 9 , divide by 5 , and add 32. In the centigrade thermometer, the interval between the freezing and the boiling point of water; is divided into 100 degrees, and the freezigg point is made the zero. Fahrenheit divided the interval into 180 degrees, and made his zero 32 degrees below the reezing point. The proportion of 180 to 100 is the same as that of 9 to 5 -Eds.

The Finnmel of clie be Rellerophong,
At the receut trial of the Belferophun Enerlisl: iron clad fricate, the boilprs steamel frerty and the enoines Were thus enabled to work up to the required power. The first trial was a ailore in this respect, add success was obthined by puthong two more courses, 16 feet, to the fanmel or suroke stack This was deemed an unlitir proceedisir by zune, arm the following disenssion took plac! in relation to it in Parliameut:-
Sir J. Pakington, who had a question of the paper with reference to t'le lengthenisr oif the formel of the Bellerophon for the murpose ot loreing ber speed, sait that he should be exremely zorry to wak a fuestion which implied a suspicion of anythins like undair conduct without having gool rauson tion so doing. Therefore be folt bound to state tiat, since be had given notice of the question, he had receivel information that pothing more was done than was commonly dene in other cases with the viru to a air trial ot speed.
Lord C. Paget said the anserer he hald to sive mas that which be intended if the question hat been put. that it was a common practice to lengthen the fon nols of ressels with the view to obtain a better dratt in the engine room. In the case of the Bellerophon the Messrs. Peun had leogthened her tunnel without haring gought any permission from the Admicalty And he might mention that the Warfiow, the right hon. baronet's own ship, had been treated in the samo way. (Laughter.)

Air in Wime Tnns.

M. Camille Saint Pierre opened a large wine tun the air in which would not support the cumbustion of a candle. As, however, the tun contained some quicklime, it was clear that the effict could not be attributed to carbonic acid. He theretore removed some of the air tor analysis, and tound it to consis in 100 parts of oxsgen $11 \cdot 85$; and nitrogen $85 \cdot 15$ The author remarks that the excess of nitrogen may be attributed to one of two causes-either nitrogen must have been generated or oxpgen must bave been absorbed. The tormer hypothesis he reject and considers it more probable that the wails of the un, under the influence of mnisture, become capa ble of alusorbing oxygen ; and he asks whether this action is due to mycoderms or the oxidation of cer tain malters soaked into the wood of old tung.- Lcs Montes.
TuE diving bell has been abandroed on the Thames in favor of the diving bell dress, princioaliy because the men employed were found, while :he Westminster Bridge was being built, to speud their time st the bottom in playing cards, and there was of course no effectual means of keeping a che k on them. It is not easy to play cards in a divivg dress alone, however, and the remedy has proved very satistactory in its operation.

Burglar alarms are inquired tor by our country readers, and we think that makers of such articles would find it advantageous to keep a short advert ise ment in the Soientific Amerioan

