
A., of Md.-Carbolic acid is composed of carbon, hyd:ogna, and oxsgen with the formula according to the old atomic welghts-

$$
\mathrm{C}_{12} \quad \mathrm{H}_{6} \mathrm{O}_{2}
$$

Which gives the proportion carbor 62 pounds, to tydrogen 6 and orygen 16. It is one of the constltuents of coal tar. and is separated first by frastional distillation, then by agitating the oll which comes over between 300 deg. and 400 deg . with solution of potash, and saturating the watery portion with by drechlorte actd
C. R. J., of N. Y.-The notion that there is any more power in a long screwdriver than in a short one-the bandles o_{f} the tro being of the same sizc-is the resa!t of careless observatlon.
E. K. C., of Me.-An index plate for a small gear cuiter can be purchased in this ciry for about $\$ 1$.
G., Ind.-Machinists' tools can be had in all tool stores. H. O., of ———Recipes for dressing furs cheaply and quickly, can be found on page 328 Vol . xI .
L. S. B., of S. C.-Your notion that the attraction of the earth is due to magnetism instead of gravitation would be overtbrown of a consideration of some obvious facts-for in stance of ibe fact that the earth attracts all bodles alike in pro
portion to their mass, wbile magne:lsm does not attract any substances with the same force, and some it does not attract at all. If you 1ry the expe fment you will find that a coin weighs all. If you iry the expe iment you
A. \& G. W., of Pa.-The officers of the Government usually express the amoun: of the pablic debt on agures, leaving readers to cald the amount thousands of millions or billions, to suit their own fancr
A. A. R., of Pa.-The picture that you send us is a wood cut printed from three blocks. One block s cut o priat the blue, anctuer to print tue yellow, and a third the purple; and th ch block
A. G. M., of Min. To get the circumference of a circle multiply it diameter b 3 4 ti6. Mu:tioly the circumference of a reet by ite revolutlons der miaute, and you will bave the length
line ticat it will wind in a minute. lle tcat it will wind
D. R. T., of Va. -The sketch of the governor you send us is novel, but there are others so much better that we do not
advise ou to proceed with it. You wil find directions for advise sou to proceed with it. You will find directions for
making artifcial vory on page 109 Vol. X . making artifcial vory on page 199 vol. X .
H. B. S., of Pa-We never heard that the injector had ang effect whatever on the slide ralve. Your question is put that no other answer will apply to
H. R., of Ohio.-There is no cement that will hold valcanzed rubber to iron so that it will not come otr.
G. S., of Pa.- If there is no pressure from below, you must calculate the pressure on the whole upper area of the valve The address of the party you require is New York City.
W. F. S., of Md.-Your case is that of many others. You lave an invention and wish to bring it before the public, bu hava no friends to whom you could confide the secret of it to inwhen if it is really useful you will find plenty of persons who wil busit.
F. Olneyville, Box 129.-We have no idea what the question was that you sent us 81 for and chat you only received " a three cent book for." If you will send your question again we will endeavor to answer it satlef actorily.
B. W. R., says:-"I am the manufacturer of a known chemical combinstion, but baving made several improvements
in it lately, bave as yet taken no patent. Should I die could my In it lately, bave as yet taken no patent. Should I dic could my beirs take a patent out for the same ?"-Yes.
H. A G., of N. Y.-The "shiny black paint" used on fancy fron castings, is fapan varnish sold by all wholesale pantdealers. It is applied cold, and baked in an oven at a moderate heat for some bours.
T. R. N. Y.-You require to know whether the recipe for welding cist stect, recently pubhished in the Sciensific Arenican, will unite wroughit iron and steel. It seems that you might put a plece ot each in yow: fire and try it. and so ind out
in the most gatlifactory manner. No water must be added to in the most gatifactory manner. No water must be added to is to be driven off.
B. \& Co., Ohio.-In philosophical terms, a pulley on a vertical slaft rotates lu a borizontal plane; in popular language it may sald to run horizontalls.
H. C. B., N. H.-Our information in regard to the state of the cabinet business in Iowa, i_{k} at present so limited that w could not adnee you with any degree of accuracy.
Worcester Rule Co.-We have never had the pleasure of reading your pamphlet, but will give attention to any article yon may forward
C. W., N. Y.-The eccentric on a horizontal engine is nearly at rizht angies with the crank; whatever the lap and load is willchange e angle that a line ibrough the center of the eccentric forma with a line drawn through the cunter of the crank. If the ergine runs backward, that is, torard the cylinder and the connection is direct from the eccontric to the vaive stem. the eccentric will be on the upper side when the crar t is on the lect postage, they lect postage, they set their paders by express.
E. A. W., Ohio.-Green hide is generalls applied as a cushion to recelve the edges of knives lo straw cutters. On paper
cutters a plece of maple wood is used.

- (

Machine Tapsensteam in Cemented Cisterns
Mes:rs. Editors:-In a recent number of the Scientific American, " Apprentice" asks for some inlormation about the best mode of filing taps. Your answer to him is correct, and agrees with my experience, as tar as the filing of the flutes is cuncerned. I call the attention of your readers, however, to another very important point which is generally overlooked by mechanics making the taps.
Taps for use in machines are now made almost universally straight ; that means, the part on which the thread is cut is turned of even diameter, and atter the thread is chased, a portion of it is tarned off tapering toward the end. To make a tap of this kind to cut free and without much heating, the tail stock of the lathe should be set to on side, enough to turn the cap on the end which enters the nut first, about 015 larger, then the required finished size of the otber end of the thread; on large taps even $\cdot 02$ is not too much.
Taps, particu!arlyđhin ones, will spring considera bly in turning, and more so by chasing (unless a steady rest is used), which canses the tap to be of a larger diameter toward the left end ot the thread It is evident from the nature or curve of the thread, that the sides of the same cannot cont and present a smooth surface to the iron in contact wich them. It is further evident that the friction on the sides causes the tap to expand, and also the nut; if the tap is larirer toward the finishing part, the friction is greally increased, and heating and hreaking of the taps is generally the consequence. On the other hand, a tap made according to the above direction will always cut free and witbont perceptible heating. The tapered part forms a series of cutters, and pone will cut more than its projertion above another; the expansion of the nut will al ways correspond with the diminished size of the tap, 60 will the strainand power required tor cutting as the width of the cutting edge decreases.
The taps in use at the place I have charge of have all three semicircular flutes, the thread on the tapered-off portion is slightly filed off to the edge, to reduce the friction, and to allow the teeth to cut free, and not to squeeze Oar 1.25 tap is 14 inches long the fhread part 4 inches, the tapered part 3 inches. The machine is not stopped for taking off nuts, the tap is simply taken out of the socket into which the sbank is fitted. The shank is turned down to the bottom of the thread the whole length, which gives room for 7 nuts to remain on it. Our $\frac{3}{8}$ tap is 7 inches long, thread part 2 inches, tapered part $1 \cdot 5$. These taps have been nsed for tive successive honrs, without heating materially, if oil is regularly supplied. Such taps, if dull, can be sharpened up very casily on the grindstone.
In your "Notes and Queries" you express the wish of learning the result of exhausting steam into a cemented cistern. We have one at this place, into which the steam of a 65 horse-power engine is exhausted during winter only, for the last 10 years, and we never experienced any difficulty. Yet I am of opinion that it will injure the cistern sooner or later. Another very serious objection against this practice is, it keeps the water in constant agitation, and prevents the scttlivg of its impurities, and as we draw our feed water from this cisterv, dirt will be deposited in the boilers. There is one reason, however, why we continue to do it; rain watei falling on all our large buildings in the yard is conducted through pipes into this cistern, and the hot steam keeps these pipes and conductors all the time open and prevents them from freezing in cold weather. The water gets very hot, particularly when the supply gets low, and under such circumstances we find it it very injurious to the packing ot the feed-water pump
Alleghany, Pa., March 22, 1866.
[We cannot agree with our corrpspondent about the teasibility of grinding taps. Few grindstores run true enough to do it properly, and few men, especially bolt cutters, have skill enough to grind a tap without some rest. It would pay in all machine
shops to have a solid emery wheel of fine grade to sharpen special tools on, together with rests suited to different work.-Eds.

Projectiles Used During the Crimean War

Messrs. Editors:-I take great pleasure in com municating to you the folloping extract from official documents in my possession, and which may be read with interest by your numerous readers:-
Number of projectiles usel:-French, 29,460.363; Englisb, 15,000,000; Piedmontese, 50,000; Turks, 50,000; Naval Forces íAllied), 35,000; Russian, 45,000,000. Total, 89,595,363.
Killed and wounded bs these projectiles:-French, 50,836; English: 91,038; Piedmontese, 183; Tarks, 1,000; Naval Forces (Allied), 2,000; Russiaן, 100000. Total, 175,057.

Lionel D'Epinetil.
Philadelphia, March 21, 1866.
[It will be seen that only one projectile in 512 did any execution.-Eds.

A Crystalline Car Axle:

Messrs. Editors:-The accompanying metal, just as it. is, was taken off a broken axle of a freight car on the Pittsburg and Erie R. R. on March 20, 1866. The axle was broken near the hub of the wheel and both parts had the same appearance. The yellow is not rust as there is no crack in the axle to let moisture in, and it is in the same condition as when I broke it off. Being a passenger train and being detained by this break is the manner in which I got it. Sizer \& Co. was on the wheel, but nothing else, no location or any thing to know where it was made.
I may not be a judge of iron for car axles, but it seems to me this is $v \in r y$ poor material.
G. M. M.

OilCity, Pa., March 26, 1866.
[The specimen is a mixture, in about equal proportions, of peroxide of iron and bright crystals of iron. It is manifestly very brittle, and wholly unfit for use as a car axle.-EDs.
The Cascade, of Light in Boston, Mass.-
Messrs. Editors :-In remarking npon an article in your paper of the 24th inst., entitled " Light in a Bowl of Water," you say, "One of the most brilliant experiments ever exhibited in a lecture room, is the throwing of the electric light upon a column of falling water." Never was a remark more true, as all can teslity who were so fortunate as to be present at Prot. Lovering's lecture in this city last Friday evening, before the Lowell Institute.
With the aid of a very powerful Rumkoff coil, in stream of falling water was made to produce, as you say, 'precisely the effect of a cascade of light."
The object of this note is, with your permission, to say that, " this dazzling experiment has been exbibited" most snccessfully in this country as well as in England.
J. A. D.

Boston, March 26, 1866.

Electricity from Combing the Hair.

Messrs. Editors:-I would like very much to see explained in your interesting paper, the following fact that occurred to me some vights ago. While I was combing my hair, using an inclia-rubber comb, I remarked that every time that I passed the comb through my hair, there was a crackling noise like the explosion of sparks of electricity. Rather astonished at this, I put out the gas light, and effectively I perceived in the looking glass before me, the bright sparks shining and disappearing in the obscurity.
As I am not acquainted with the mysterious ways of eleoricity, I would feel obliged to you for an explanation.

A Subsciriber.
New York, March 30, 1866.
[A common phenomenon. Electricity is produced by friction, and one ot the very best electrics is hard india rubber.-Eds.

Messrs. Editors:-Your statement in sour last nnmber, as to the strength of ice, is calculated to mislead, and any officer trusting to it in moving a body of men would be vers apt to give them a cold bath. Two inches of good ice will bear a man, nnt not a number of men. In deep water it will always crack a little even with one man's weight, and would very soon be weakened. Four inches will ecarcely bear a horse. You could not invent a more perfect ice breaker than a horse's sharp shoe. All his weight

