Each floor is attached, by separate suspenders, to or would be allowed to recover. By the middle o a separate pair of cables; though, of course, by November, 20,000 (or as was stated), one in a thoumeans of trusses and other connections, any load sand had perished; and up to December, $40,000 \mathrm{had}$ is mutually borne by all the cables. The cables are, therefore four in number; each cable is $10 \frac{1}{4}$ inches in diameter, and composed of 3,640 wires about one tenth of au inch in diameter. These wires are made up into seven strands of 520 wires each, which are bound romed at intervals to keep them in their places. The strength of all the cables is calculated at 12,000 tuns, each wire being able to bear 1,648 lbs. without breaking. The tota length of the top cables is 1,261 teet and of the bottom cables 1,194 feet. The cables supporting the lower floor descend 10 feet lower than the top pair, the deflection from a straight line being 54 and 64 leet respectively.
The suspenders are 624 in number, placed 5 feet apart.
The structure is remarkably steady and free from vibration; to secure which desirable object various means have been employed.
The principal cause of the stiffiness of the bridge is the systeu of trussing adopted. On each side of the bridge the upper and lower floors are connected by wooden posts, arranged in pairs side by side. just snfliciently apart to allow the diagonal truss rods crosing between them. These truss rods are of wrought iron an inch in diameter, and extend at an angle of 45 deg. from the bottom of one pair of posts to the top of the fourth pair from it. As the posts are 5 leet apart, like the suspenuers, the pressure above any pair of posts is by these truss rods spread over a spiace of forty feet. The truss rods are screwed at the ends; aud thus, if the timber should shrink at any time, all cau be made right again by eimply tightening the nuts on the truss rods, which braces all tight up together again. In short the two floors, connected by the system of posts and trusses here described, give much of the rigidity of a tubular bridge, with only perbaps a tenth of its weight.
There are also a number of diagonal wire stays, extending from the top of each tower. These stays are 64 in number, and though they do not bear much of the weight of the hridge, Mr. Roebling believes them to gnard it considerably against vertical oscillation. A numoer of smaller stays are a:so at tached to the underside of the structure, and anchored to the rocks below.
The inclination of the upper cables also greatly guards the bridge against horizontal vibration. The centers of the towers are 39 feet apart; but instead of hanging straight from tower to tower, the top cables are brought in the middle to within 13 teet of each other. The suspenders are also inclined inward; and the whole arrangement, though it puts a very slight additionai strain upon the cables, tends greatly to maintain the steadiness of the structure.
The construction of the masonry is one cause of the economy of the bridge. Instead of a massiva tower on each pier, as in most European examples, there are two towers one for each pair of cables, so slender that they look like mere chimneys, yet abundantly sufficient for the purpose. The basement is a mass of masonry 60 feet by 20 feet, pierced by an arch 10 feet wide, which forms the entrance to the lower floor at each end. Above this are built two towers, each 60 feet above the arch, 15 feet square at the base, and 8 feet square at the top. By this iight construction' without incurring any risk, much masonry and money is saved.-Lewis Wright.

The Cattle Plaguc.

Uur last accounts of the cattle plague in England slow that up to the $3 d$ of March, during the six months in which the epidemic has so far prevailed, 187,059 cattle have been infected, of which 117,654 bave died directly from the disease, and 26,135 have been killed by way of preventing its spread. But this statement is only the Inspector's report, and does not pretend to give the whole number of cattle which have perished since the beginning of the pest in the latter days of August.
It apyears that the general epidemic had increased steadily up to the latest mail from England, every stel of its march becoming more alarming. The number of deaths, which averaged a thousand or more per week in September, increased from 1,700 to 2,000 in October. Lp to November, 17,673 animals had been attacked, of which only 848 could recover caught the disease. By the 1st of January the num ber reached 73,$549 ; 7,683$ dying in one week; and in the last week of January, 9,243. By the middle of January, 107,098 had been attacked, only 15,527 re maining under treatment. The February papers pic ture the plague as positively awful in the country, and by the middle of the month, 150,000 cattle had become intected, and all but 40,000 had died. -Tri bune.
[The number of deaths in a wetk, 9,243 , is eqnal to 1,320 a day, 55 au hour, and very neariy one a min ute. As the cattle of England are generally of fine quality and great valuc, this is a rapid destruction o property.

MAREETS FOR THE MONTH

The prominent event in business matters during the month of March is the flactuation iu the price of gold, which fell from $140 \frac{1}{2}$ to $124 \frac{7}{8}$, and af!eward rose o 128. . Of course, it is not gold that fluctuates but our paper money; when gold is qnoted at 140 , it is equivalent to saying that bank notes and Government legal tenders are worth 71 cents in the dollar; while gold at 128 means that the value of a paper dollar is 8 cents. These fluctuations in the legal measure o values create disturbances in business matters.

the extraordinary humidity of the atmosphere in April, May and June.
"There are 3,340 miles of railroad in the State, with a paid up capital of $\$ 77,694,737$, and an in debtedness of $\$ 53,931,686$.
" The production of maple sugar, $\begin{gathered}\text { sorghum sugar, }\end{gathered}$ maple molasses, and sorghum molasses was, in total sugar, 5,239,729 lbs., ; molasses, 2,933,697 gallons.

NEW PUBLICATIONS

General Notions of Cheuisrrry-By J. Pelouze and E. F. Frens. Translated from the French by Edmund C. Evans, M. D., Philadelphia. Lippincott, Grambo \& Co.
This is a small volume of 439 pages lllustrated by 27 lithograph engravings, and from the high character of the authors, is, of course, truatworthy anthority. It is intended for beginburs, and the auchors hoped to make it more eass and acceptable by omitting symbols, and, of conrse, any explanation of the atomic theory and equivalent proportions. We have no doubt that this is a mistake; the shortest, as well as the easiest and most agreeably roa', to a knowledge of chemiscry, is the mastery of Dalton's atomic theory. This is the key that uniocks the mysteries of the science.

Experiment with Traction Enginst.

Messrs. Aveling \& Porter, a firm of steam engine builders in England, who are making a good many traction engines, recently tried an experiment to ascertain the cost of transporting goods by ateam engines on common roads-that is English common roads, which are macadamize turnpikes. The editor of the London Engineer was isvited to talso notes of the trial, and he gives the results on hits own authority. The work performed consisted in hauling three wagons, loaded with 15 tuns of lime slone, and coal, 26 miles; the whole welsht of the train being 21 tuns. T'be train started at $5: 55 \mathrm{~A}$ M., and arrived at 6:30 P. M., occuplog 12 hours and 30 minutes in the journey, iucluding 33 minules spent in trging to stop "a leak between cylinder cover and valva box cover." This is a speed ot $2: 8$ miles per hour. The coal consumed was 23 crt . and the expenses of the joumey reduced to dollars and cents were as follows:-Toils, \$10 54; cori, 5 57; oil and waste, 84 cts. labor, $\$ 3 \mathrm{l2}$; wear and tear and interest, \$2 94; \$23 01
This is equal to $\$ 153$ per tun for the 26 miles, and 6 cents per tun per mile; to which must be added the cost of loading and ubloading. Our readers will not fail to observe that the tolls for this 26 miles of turnpike amounted to ten and a bal! dollars.

Hub, Spore, and Felly Machinery.--We have constant inquiries for this clafs of machinery, from readers in all parts of the coantry. As we alway refer such inquirers to those who advertise in our columns, we think that manufacturers will do well to advertise constantly in the Scientific Ambrican. The profits from a single advertisement will some times pay the expense of advertising for an ontire year.

Portratts on Watches.-A novel idea was recent ly carried ort by an individual in Philadelphia. De siring to have a picture of his father constantly be fore him, he took his watch to a jeweler had tho dial removed; and the likeness photographed upon it. Porcelain pictures have been taken for some time, but this is a new phase of them.
Trussed Connecting rods for Locomotives.-On some of the New Jersey Transporation Company's locomotives, trussed parallel rods have been applied. These rods are much lighter and stiffer than straight solid ones or should be if properly proportioned, and are therefore preferable. Such rods bave been used on steamboat engines for some time, but not on iocomotives.

Knititing Machines -We arc frequently written to from various parts of the country asking where the best of the above machines can be had. Makers will do weli to keep an advertisement in the Scien tific American.

Manufacture in the West.-A large woolen factory is going up at Warsaw, Illinois. It is to cost $\$ 150,000$, and will employ one hundred operatives.

Collection of Projectiles.

A correspondent residing in Washington sends us a slip that contains the following facts in regard to a collection:-
A collection embracing all the different varieties of projectiles used during the war of the Rebellion. which has been made at the United States arsenal in this cits, and systematically arranged in an apartment in one of the arsenal buildings specially fitted up for the purpose. Shelves are ranged completely round the room, while the center is occupied by two stands, upon which the shells and other projectiles are placed in regular order. In adnition to all the projectiles used by the Union forces, the collection includes a great variety of shells, solid shot, etc., many of English manufacture, which have been captured from the Rebels. Among those used by the Union forces we observed the James projectile, which was used to great advantage in the reduction of Fort Pulaski, in the earlier days of the Rebellion. The inventor unfortnnately lost his life while engaged in exhibiting his shells to several foreign offcers and others. It appears that a workman attempted to remove a cap from a shell with a pair of pliers, when it exploded instantly killing the workman and General James, who was assisting him, and severely injuring several of the bystanders.
Several ingeniously constructed torpedoes, designed to be used in destroying the vessels of a blockading squadron, are suspended from the ceiling. Three of the torpedoes, taken from the James River, are constructed of common casks with courical floats attached to each end. They were to be allowed to float down the stream with the current, until they arrived in close proximity to the Federal ship-of-war, and were then to be exploded by means of a cord attached.
Upon one of the shelves we observed a number of singularly-shaped projectiles termed darts, invented by Floyd when Secretary of War, and by him forwarded to the arsenal for trial.
A collection of hand grenades of different patterns will engage the attention of visitors to the model room. One grenade is.in thesorm of a hollow sphere designed to be filled with powder. From the outer surface a number of common gun nipples project, upon which percussion caps are placed. The grenades are to be used to repel an assault of an enemy upon a fortification, and as they explode with bat slight concussion, they would undoubtedly prove exceedingly destructive to the assaulting party. The Adams grenade is made in a similer shape, only differing in the manner in which it is exploded. It is the invention of a private in the army, who had observed that the haud grenades in general use frequently failed to explode. The hollow globe contains the explosive matter and a common fuse, over which is placed a friction primer. To the primer a lanyard several yards in length is attached, one extremity of which is securely held in the hand of the person using the grenade. The projectile is thrown in any desired direction, and when it reaches the end of its lanyard, the friction-primer is suddenly jerked out igniting the fulminating powder in the fuse, and consequently exploding the grenade.
The collection contains a single specimen of a fire-ball, composed of highly combustible materials, which, when ignited, produce a powerful white light. It takes fire when discharged from the cannon, and is intended to be thrown in the direction of any point where the enemy are supposed to be engaged in throwing up intrenchments at night, in order that their correct position and the number oi troops engaged in building them may be ascertained. The collection also contains a number of Hale's war rockets, which were extensively used in McClellan's Army during the disastrous campaign on the Peninsula.

The model room has been fitted up, and the shells and other projectiles carefully arranged under the supervision of Thomas Taylor, Esq., of the riffeshell department. Every article in the collec tion is numbered, and Mr. Taylor is at present engaged in compiling a descriptive book to contain the names, distinguishing features, history, etc., of each individual shell or other projectile in the collection. We are informed that similar collections are being made at the Ordnance Department and Navy Yard, which will undoubtedly prove of immense benefit to
army officers and scientific men interested in the matter.

LAKIN'S WATER-WHEEL REGULATOR.

Manufacturers who use water power know that it is as unsteady in action as any other.motor, and the quantity admitted to the wheel must be governed by

the duty to be performed at the moment, otherwise irregularities are manifest. This must be done by the wheel itself, automatically. It cannot be done by hand, for no human intelligence could foresee the precise moment when a machine was about to put on or off in the mill.
The apparatus here shown is to be attached to a central vent wheel, and controls the velocity of the same by obstructing or enlarging the issues. It also obviates in measura essive weight and labor on the step, and instead of iocreasing the strain, diminises it. This end is attained in the following man-ner:-
The upright shalt, A, of the wheel has a collar, B, on it, with two projecting arms, C. To these the upper end of the governor levers are jointed, and also

the end of a bell crank, D. Tae other end of the same connects with a coller on a cast-iron sleeve, E, fitting over the main shaft, and the governor levers also connect with it through the medium of a bolt, F. The sleeve, E, connects at the bottom of a regulator valve, G, Fig. 2.
It is easy to see that, as the main shaft revolves, the governor will also, and that an increase or decrease of velocity will act on the balls and cause them to rise or fall, thereby affecting the position of the valve and its openings, H, with reterence to the wheel and its issues, I. Any given velocity may be obtained for the main wheel by simply rasing the
balls in the bell crank, D. The higher the point they are set at the greater velocity will be required in the wheel to raise them yet further.

Below the wheel is a water chamber, J, which has limited issues, as in the pipes, K. Upon this water, the result of leakage through the edges of the wheel and the scroll, the wheel and shaft rest in a measure, or in such a degree that great wear is obviated on the step.
A patent was issued on this governor to T. D. Lakin, on Oct. 13, 1863. This governor is manulactured by G. W. Davis \& Co., Nashua, N. H., whom address for further information.

van kanel's cherry stoner.

This is a little machine designed to remove the pits from cherries that are to be preserved with sugar or dried. It is difficult to give a clear representation of this macinine, owing to the nature of the traming, which is so open and light that the working parts become confused with it. In effect the work is done by turning a wheel, A. This has a pin in it which works a slide, B , inside the main frame. This slide rises and falls vertically by the action of the pin in the slot, C , and there is a tork, D , attached to it which receives the same motion; besides that, it ha

a movement on the center, E, very much like that given a paddle in moving a boat.
To stone the cherries they are taken by the stems and laid inside the trough, F, through notches in the edge. A little pull detaches them, and they roll down on to a table, G, which rises and falls alternately and throws one at a time under the tork, D ; as it descends it pierces the cherry and pushes the stone out through the bottom, as at H , and by a dexterous flirt, throws the fruit out at one side into a vessel, completely pitted.
Rights for sale. For further information address Joseph Beare, Chester, Ill. Parties in Ohio and vicinity can address Babbitt, Harkness \& Co., Nos. 18 and 19 Public Landing, Cincinnati, Ohio.

SPECIAL NOTICES.

Samuel Nye Miller, of West Roxbury, Mass., has petitioned for the extension of a patent granted to him on the 29th day of June, 1852, for an improvement in compound anchors.
Parties wishing to oppose the above extension must appear and show cause on the 11th day of June next, at 12 o'clock, M., when the petition will be heard.

Christopher O. Brand, formerly of New London, Conn., but now of Norwich, Conn., has petitioned for the extension of a patent granted to him on the 22d day of June, 1852, for an improvement in bomb lances for killing whales.
Parties wishing to oppose the above extension must appear and show cause on the 4th day of June next, at 12 o'clock, M., when the petition will be heard.

Back Numbers.-New subscribers are informed that the back numbers of the present polume are out of print. Subscriptions are entered from the date of their receipt.

