THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC. MECHANICAL AND OTHER IMPROVEMENTS.

SCIENTIFIC AMERICAN, Poblished weekly At No. 128 Fulton street, (Sun Buillidg
o. d. munn, s. h. wales, a. e. beach. Reaponesto A A ents may also bo fuand in all the
principal cities and towns of the United States. Single copies of the paner are on ale e at the office of
pubilication, and at an the periodical 1 totores in this cits publication, and at all the .
 TERMS-Two Dollars per annum. One Dollar. in TERMS-Two Dollars per annum.-One Dollar in
Rdyance and the remainder in six month.
See Pros. A ${ }^{\text {atents }}$ emploged.

A method has rel Castings.
. which wrought iron can be melted, and poured into molds, producing castings which retain all the toughness and qualities belonging to wrought iron. Scrap or wrought iron may bo employed, or bars or plates cut into small pieces, these being melted in crucible such as are used for melting blistered steel. To a charge suitable in amount to the crucible, one-half of one per cent. of charcoal, (by weight,) one per cent. of manganese, and one of red ammonia are added. The whole is covcred from the atmosphere and melted in a temperature of about fifteen hundred degrees Fahrenheit, which temperature is maintained for three hours. The metal is then poured into molds. The iron thus cast is so malleable as to be capable of being treated under the hammer in the forge, and thus part of the iron may be shaped in molds and part completerl by fr ging, froducin: cruar ental work.
[The above is copied from an exchange and we consider it a good recipe for converting wrought iron into cast steel. Any one who may try the experiment will find it to produce a good result. Let them smelt all the given iugredients in a crucible, skim off the scoria, and pour out the metal into ingot molds, and they will find very good cast steel

Russia Sheet Iron.

It is a popular notion that the process of manufacturing the tenacious and glossy "Russia sheet iron" is a profound secret and that the vigilance of the Russian government and the Russian manufacturers has hitherto successfully prevented all foreigners from obtaining the slightest information on the subject. The present Commissioner of Patents, in his last report, also alludes to the manufacture of this article as one of the great unsolved problems in science, which the industrial interests of the country require should be ex plained.

Mr. Wells, in his recent work, "Principles and Applications of Chemistry," states that this current belief has no foundation in fact and that the method of preparing the iron in question is perfectly well known. According to the authority quoted, "Russia sheet iron is, in the first instance, a very pure article rendered exceedingly tough and flexible by refining and annealing. Its bright, glossy surface is partially a silicate, and partially oxyd of iron, and is produced by passing the hot sheet, moistened with a solution of wood-ashes, throngh polished steel rollers."
Another mythical bubble is thus punctured, and the wonderful story of guarded founderies and ever-watchful officials, as connected with Russia sheet iron, will take rank with the account of "Symmes Hole," and the barnicles which turn to Solon geese.-Exchange.

There is little doubt that gas, as supplied to consumers in our large cities in charged a most unwarrantable and extravagant price, and very often the quality is not the best. Many methods have been adopted to lower this price, but in most instances have proved unsnccessful. and the unly was now lett is for ucl: as have large houses, hotels, public buildings, \&c., to make their own gas, and prove to the gas companies their independence. In the country, where no gas-works are erect d, the ever-dangerous "burning fluid" is used as an illuminating material, and the re sults, in the form of accidents and loss of life, we read in every newspaper. The most safe, leanly, and cheap illuminating agent has been unquestionably proved to be coal or other gas, the former being most easily manuactured, and the raw material generally at hand. Many individuals would willingly fit ap a private gas-works, but they have not, in the first instance, the room to spare in their garden or grounds, and secindly, few feel in clined to go to the expense of putting up gasworks for their own private use.
In order to enable every family to make their own gas, A. Hendrickx, of this city, has invented the arrangement that forms the subject of our illustration. It is a combination f a cooking range and a gas apparatus, so that the waste heat from the range can be made to aid in the generation of gas, and the coke produced in the retort will, in a great measure, supply the fuel for cooking. The perspective view of the apparatus above may be easily understood.
A is a cooking range, having on its top plate the openings, b, for pots and pans, an ven, c, and fire door, a. Thiscooking fire is connected by a flue, K , with the chimney, L , oo that it is perfectly independent of the re tort, and can be used alone when it is no equisite to make gas, the retort being placed through the back of the range on the opposite side of the oven, and its fire door is seen at b^{\prime}. The flue of the retort fire is indicate by J , and communication can be opened beween it and L by the damper, f, which en ables only one or both fires to be lighted and sed.
As it is supposed that this apparatus wil
have to be attended to by comestics who are not used to manage such contrivances, it has becn mare as simple as possible; and in the pipe which conducts the gas from the retort to the condensers there is a safety valve, B , (on which there is a-qpecial patent) the use of which vender: explusion almost impossible; and no matter how careless the attendant may be, the retort being once filled with coal, the door closed and the fire attended to, the apparatus will continue to work with safety and perfection as long as there is any gas in the coal, as, should the gas be generated so quickly as to produce a dangerous pressure in the retort, it will elevate the safety valvewhich is simply an inverted cup over a pipe, and surrounded by water-and pass quietly into the air, without any dangerous results. The gas passes from the retort through pipe, C , into the condenser and cooler, D , where it parts with its tarry matters and other impurities, and from that it passes by pipe, E, into another purifier, where the sulphur is separated, and the gas thoroughly cleansed by a special composition adapted to this apparatus. This gas is finally led through pipe, G, into the gasometer, H , placed between the posts, I , which is an india rubber bag of any suitable size, and which is provided with a flat top, e, that can be weighted to force the gas to the burners with any desired pressure.
We have seen one of thesa combination cooking ranges and gas generators at work, and were highly pleased at its economic results. It is free from the many objections which are raised against rosin and rosin oil apparatus, and it is every way adapted to supply large or small houses with that most necessary of all blessings-light.
The patents are dated April 27th, July 27th, and August 3d, 1858. Any further information as to cost, agencies, \&cc., can be obtained by addressing Hendrickx Brothers, Gas Generating and Cooking Range Co., No. 512 Broadway, New York.

Animal Curiosities.
The tongue of a cat is a singular instrument. It is her currycomb. For this purpose it is rough, as you will find it if you feel it. When she cleans herself so industriously, she
gets off the dirt and smooths her coat just as the ostler cleans and smooths the horse's coat with the curryoomb. Her head she cannot get at with her tongue, and so she has to mak her fore-paws answer the parpose instead.
There is one bird that lives chiefly on oysters. It has a bill, therefore, with which is opens an oyster as skillfully as an oysterman can with his oyster knife.
Some birds can sew very well with their bills and feet. There is one bird that sews 80 well that it is called the tailor bird. Its neat is hid in leaves which it sews together. I does this with a thread which it makes itself It gets cotton from the cotton plant, and with its long, delicate bill and little feet, spins it into a fine thread. It then pierces the holes through the leaves with its bill, and passing the thread through the holes, sews them to gether. We believe that in getting the thread through the holes, it uses both its bill and feet.

Novel Experiment in Ship Building.

The Boston Jour•nal describes a steame which is now being built at East Boston, and is to be propelled in a novel manner. She is built as an experiment, the inventor being furnished with the necessary funds by some of the leading shipbuilders of Boston. The hull is fifty-two feet long, and thirteen feet wide at the stern, and tapers gradually at the bow, which is very sharp. She is five feet deep. On deck she will have a cabin 19 feet long. She will be worked by an engine of 12 -horse power, to which will be attached two propel-lers-one at the stern, three feet in diameter, to work in the water, and one at the stem, eight feet in diameter, to work in the air The air propeller is attached to a shaft which connects with the engine and the water propeller at the stern. It is supported by a post at the stem. Both propellers will be worked by steam. The smokepipe will lie horizontally on the deck. The inventor is confident that by this arrangement he can easily get 25 to 30 miles an hour speed out of this craft.
The South Carolina Blue Ridge Railroad has a summit of 2,151 feet, passed by a tannel 5,562 feet long, and approached by gradients of 1 in 75 .

Notes on the Progress of the Padelle and
Having thus noticed the paddle-wheel genrally, as to when it was introduced, how it was turned, and where it was placed, I may proceed to consider various plans and invenions relating to its several parts; but it is to be distinctly understood that I refrainfrom omparing the
Beginning, then, with the shaft and wheel,
Beginning, then, with the shaft and wheel, as a whole, we find that Tremeere (1801) and
Robinson (1826) supported it on a stage, to be raised and lowered by ropes. For the ame purpose Melville (1845) used a cogged sector, and Drake (1851) employed screws. The connecting rod had a screw joint, which allowed the rod to accommodate its length to the varied distances between the piston rod and the shaft. Coles (1839) supported the haft on friction wheels.
To enable the enginepr to ane only one wheel at a time, Gough (1828) put each on the shaft of a separate engine, whilein Field's plan (1841) the wheel was disconnected by moving it and the part shaft horizontally. For the same purpose Wilkinson (1835) moved a sliding crank plate along the divided shaft, until the crank pin locked into it. Brunet (1843) used a sliding ring and bolts; Thomas (1851) employed wedges and a friction cushion. In Seaward's plan (1840) the parts were coupled by friction surfaces, screwed up to close contact. Trewhitt (1840) tightened a friction strap by cutters; Bodmer (1843) and Borrie (1843) used cog wheels; Scott Russell's patent (1853) gearing, worked by the motion of the shaft, is applied to the $L e-$ viathan. Price (1823) used intermediate wheels to regulate the relative speed of the engine shaft and paddle shaft. The groove and stud apparatus of Parlour (1838) gave the wheel twice the speed of the engine shaft. Murduck (1839), Brown (1842), and Bodmer (1844), had plans somewhat similar.

The modifications of the wheel itself are difficult to classify. Barton (1820), Sang (1852), Bellford (1853), and many others, made it a buoyant drum. Stevens (1827) put floats on three arms, not in the same plane. Springs were introduced by Adams (1839 and 1855) to ease concussion. Skene (1827) had side plates on the rims. In Tayler's plan (1840) one wheel might be covered from the water by a shield. Essex (1838), by dividing the wheel horizontally, folded back one part by linges on the rim; while in Drake's plan (1851) the arms fold on hinges, like a fan. Galloway (1832) and Herbert (1855) attached an additional wheel, by a short shaft jointed to the outer end of the other, so that the rims of the wheels approached water, and were more apart at the upper edges. Daubeny (1840) made the second outside wheel turn slower than the inner one, but in a parallel plane.
Let us next turn attention to the floats or
paddle boards, and first as to those that are immovable on the wheel. Floats of the simimmovable on the wheel. Floats of the sim-
ple rectangular radial form were the earliest in use. Pitot (1729) put floats in planes tangential to the surface of a cylinder on the shaft; Perkins (1829) placed them at an angle to the shaft ; Sharpley (1856) aggregated them into one continuous spiral rib; Galloway (1832) used two sets of floats, inclined in different directions; Chatterton (1842) and Stevens (1851) inclined each float (1842) and Stevens (1851) inclined each float
in an opposite direction to the next, which in an opposite direction to the next, which
projected beyond it at one end. Brooman (1852) put the oblique floats with one end further from the shaft than the other ; Carter (1832) put a valve between each pair of inclined floats. This was to let out the back water, which was effected in Pickworth's plan (1836), by louvre boards in the float, in Elvey's (1837) by a valve, and in Woodley's (1839). by holes bored diagonally through the float:- Galloway (1835) divided the float horizontally, and put the parts successively in advance of each other. In Gemmel's plan (1837) the middle part was foremost, and Jones (1847) made the parts to overlap.
The edges of floats were curved by Robertson (1829), Ruthven (1830) made them of a barrel shape, and there is scarcely any other form which has not been proposedfor them at one time or another. Hollow floats were used by Berry (1831), to condense the steam conducted through the arms.
Floats were made morable, for reefing, shipping, and feathering. For reefing, Parr (1825) made the floats slide on the arms with joints. Galloway (1843) placed the movable pieces on a separate inside wheel, moving laterally on a hollow shaft; and Brunot (1843) placed them on different sides of the arm. Massie (1836) dividing each float into parts with parallel bars, caused one set to move over the other for reefing. For attaching the floats, Hamond (1844) used wedges, while screws were employed by Brown (1847).
Hall (1839) and Bird (1842) protruded
then by a fixed spiral groove. They might be folded on hinges in Tremeere's plan (1801), and were worked through screw rods by Holebrook (1838). In Leeming's plan (1835) and Newton's (1843), each float protruded during part of every revolution. Redmund (1838) made them fall back by hinges as they revolved. Each float ran out and in by its buoyancy in Oxley's plan (1845).

"Pass the Pepper."

Of all the aromatics which are partaken of by man as flavorers to his food there is none more common than pepper, and when unadulterated, its tendency, in small quantities, is rather to aid digestion than otherwise. The three important peppers commonly found on the dinner table are white, black, and cayenne, all natives of the tropics. They are much used (to stimulate digestion) by their human brethren-those hot and choleric oldnabobs who confer a benefit on the world by living in hot climates far remosed from the haunts of civilized life. Thus the chow-chows, curries, and other hot dishes so relished by your yel-low-faced East and West Indians owe their flavor and pungency to the amount of pepper that they contain.
There is one variety of the genus Piper to which the white and black peppers belong (cayenne being a member of the genus Cupsi-cum-called so, by the bye, from a Greek word whichsignifies to bite); this variety is a great favorite with housekeepers and cooks, and has received from them the flattering name of "allspice," as it combines in itself the flavor of cloves, nutmeg, and cinnamon; it grows plentifully in Jamaica and other American islands, where it was first discovered by the Spaniards, who gave it the name of Pimenta de Jamaica. The French call it the "round clove."
Black pepper is cultivated in large quantities in Malacca, Java, and especially at Sumatra, the trade of these places being almost exclusively in these spices. A pepper garden
during the ripening of the pod is a lovely sight, being a large plot marked out into regular squares of six feet, in each of which are planted young trees called chinkareens, that serve as props to the pepper vines. When the prop ha: reached twelve feet high, it is cut off and the vines planted, two to each prop. A vine is three years in coming to maturity, and the fruit, which grows in long spikes, is three or four months in ripening. The berries are plucked as soon as ripe, and spread on mats upon the ground to dry, by which process they become black and shriveled, and are imported here as black pepper. In this city, and distributed throughout the States, are many mills where pepper is ground, and, we are sorry to say, it often sophisticated with burnt crust of bread and other adalterations.
The Sumatrans once did a genuine Yankee trick in connection with pepper, which is worth recording. They steeped the pepper corns in water until their shells or outer coat burst and then drying them without it, sold for threa times the price of the black, as a different species, to the East India Company, who then monopolized the pepper trade. The company, having swallowed the story, made the buyers swallow it too, and ever since we have had the two peppers, white and black, both coming from the same plant, but one possessing its coat, and the other being deprived of that useful appendage, and so weakened in its pungency. The effect of pepper is stimulative and carminative, and as a condiment it seems not only to add a peeuliar flavor of its own to dishes into whose composition it may enter, but also to develop the flavor of the other ingredients. Taken in small quantities it warms the whole system, but if a large dose be placed on the palate, it seems to burn the tongue, and throw the whole mouth into a perfect glow. As a medicine it has been proved beneficial in cases of vertigo, paralysis, and intermittents. The pungency depends on the presence of an aromatic resin which can be extracted by ether and alcohol, and partially by water.
Cayenne was first noticed on the coast of Guinea, and has been generally used by the natives of those climes in which it grows as a strengthener for the stomach. It is an extraordinary fact, but still true, that although savages may be unacquainted with the polite arts, they are generally well informed upon the subject of gastronomy, and to suit their sometimes peculiar tastes, they generally discover all the edible good things which their native soil affords. It cannot be denied that hunger and the palate are great equalizers, and the stomach, much as we abhor gluttony, does much for civilization; in fact, his stomach and its wants distinguish man from the brutes, for, as Dr. Kitchener correctly observed, "Man is the only cooking animal."
The cayenne of commerce is the grain or seed of the capsicum ground and mixed with flour and then baked into little cakes in an oven; these are again broken up and mixed with more flour and placed in jars for sale. The tree or plant is very beautiful, and forms a great ornament to a garden, but it is very tender and requires much care. It is more pungent than either white or black peppers, and is often adulterated with logwood and mahogany sawdust and red lead; this latter can, however, be easily detected by placing a spoonful carefully in a glass of water, when, should it contain•any red lead, it will from its specific gravity quickly drop to the bottom, while the cayenne will sink but slowly. A very pleasant drink may be made for these cold winter nights, and one that is healthy too, from pepper. Here is the recipe :-Place three or four lumps of sugar with half a teaspoonful of pepper in a tumbler and fill up with hot water ; when the sugar is dissolved, drink. It is not only pleasant to the palate, but warms the whole body more effectually and quicker than any spirits. Those of our readers who try our recipe once will often, during the coming winter, when the fire burn
low, and they feel chilly generally, exclaim in the la:guage of our caption, "Pass the pepper."

Compass Compensntor.

The mariner's compass is often found to indicate wrongly from what is called "loca attraction" affecting the magnet; this is peculiarly the case in iron ships. Calvin Kline of Brooklyn, N. Y., has invented and patented this week an arrangement to correct or counter act this. The nature of the invention con sists in the arrangement of one or more magnets in a horizontal position, below or above the needle of the compass, with opposite poles horizontally in line with the vertical center or axis on which the needle turns, and on the opposite sides thereof, by which arrangement the opposite poles of the magnet or magnet are caused to act upon the needle to force it into the same direction. It also consists in in applying the so arranged magnet or magnets so as to make it or them adjustable on a center coinciding as nearly as practicable with the vertical axis on which the needle turns, that their poles may be made to point in any direction necessary to compensate for the local attraction, and may have their di rection varied to meet any point or points of local attraction that may be produced by different cargoes or other causes. It further consists in providing for the adjustment of the so arranged and applied magnets in a direction parallel with the axis or vertical center on which the needle works, for the purpose of increasing or diminishing the intensity of their action according to the intensity of local attraction. Patents have also been obtained in England, France, and Belgium.

Tarring Rope Yarn.

John Stewart, of Brooklyn, N. Y., has invented an improved machine for tarring rope arn, and assigned the invention to Charles Wall, 220 Front st., New York. The improvement consists in the employment within the tar vat of one ar mare sories of sheaves or conductors, around which the yarns are bent in their passage through the tar, and by which they are conducted in such a manne as to cause them to pass through the tar in opposite directions, whereby they are caused to be more perfectly penetrated by the tar, and to keep the tar well stirred. The claim will be found on another page, as it was pat ented this week.

K nitting Machine

F. Schott, of Brooklyn, N. Y., has invented an improved knitting machine, which has principally for its object the production of stockings and other knitted fabrics of a closer or more compact texture than llose ordinarily produced by machinerg. It consists in a series of improvements in those kinds of straight knitting machines in which the needle bed has a movement back and forth, o present the needles, one or more at a time, in regular succession into an operative relation with one or more feeders or thread conductors, and a corresponding number of stitch hooks. The claims will be seen on referring to our list this week.

Improved Sash.Fastener.

John Bestwick, Jr., of Dedham, Mass., has invented an improved sash-fastener, which consists of an eccentric or cam provided with a spring fitted within a proper box or case, and used in connection with a spring bolt. These parts are placed in the side strip of the sash, and the eccentric and spring bolt are in such relation to each other that the lowered sash will not only be retained at any desired hight, but also locked when down or closed, and the spring bolt drawn back by actuating the eccentric. The invention was patented this week, and the claim will be found on another page.
We are indebted to Hon. Jol:n Cochrane, Member of Congress for this city, for many Congressional favors, and especially for copies Patents

