Retardation of Signaleth

Cable.
Messers. Editors-In a recent number of the Scientific American, one of your correspondents says, "No adliantage would be secured by having, as some have proposed, a separate wire to complete the circuit." I think the contrary can be shown to be the case.

To make my meaning clear, we must look a moment at the cause of the retardation of signals, owing to secondary currents. It is now pretty well understond that it is as follows: the inner, or conducting wire, is in the position of the inner coating of a Leyden jar, the outside iron wires and water forming the outer coating, and the gutta percha representing the glass separating them. When a galvanic current or wave is sent through the inner wire, besides passing through it to the other end, it also charges it in the same manner as a Leyden jar, forming a secondary current, which tries to get to the earth wherever there is a chance; and the time occupied in doing this is the firstobstacle experienced. Now, after ti-e wire is so charges, when the circuit, is opened atthe transmitting office, this secondary current cannot get out at that end, on account of having there no communication with the earth, consequently it proceeds to the receiving office, where the wire is connected with the earth to receive the signals, and there finds its way to the earth, and while flowing out, it affects the instruments at that office after the signal has heen received.
If now, instead of the circuit being kept open by the transmitting operator, he wishes to send another signal immediately after the first, and before the secondary current has got out at the other end (which occupies some time), and he closes the circuit for that purpose, thereby connecting the conducting wire with the earth, part of the secondary current remaining in the wire immediately rushes back to the earth by that route, as it can, in that way, reach it sooner than by going to the other end. This, of course, interferes with the wave the transmitting operator is trying to send, as it cannot enter till the secondary current has passed out.

By considering these things carefully, we find that the only interruption we meet with from the secondary current is when any communication is made between the conducting wire and the earth, which, of course, in the present system of working, is done whenever a signal is sent or received. Therefore the only way to avoid that interruption is to keep the conducting wire perfectly insulated at all times from the earth and outside wires of the cable, and this I propose to do as fol-lows:-
Hava two cables of one wire each, or one cable of two wires. Let one wire be employed to carry the current across, and one to bring it back, thus doing away with all ground connections. All instruments and batteries placed in this circuit must be perfectly insulated from everything else. The handle of the key used in transmitting signals must be made of glass, or some nonconductor; likewise the connection between the adjusting handle and instrument, if it be a rod; or of silk, if it is a cord.

With cable and instruments thus insulated, it is plain that when the first current is sent through, either one of the following things will occur ; the wire will not become charged with the secondary current at all, on account of its having no communication with the earth to obtain it from, or, if it does become charged, it will not discharge itself, on account of there being no route or conductor to convey it to the ground. The conducting wire, then, being always charged with this secondary current, the battery current would require no extra time to charge it, and would pass at once to its destination-being neither lengthened at the other end by the secondary current following it out, or resisted at its entrance the second time by the same current rushing back to the earth.

With reference to the two inside conducting wires inducing currents in each other, on account of running parallel, the induced currents will have no effect on the primary ones,
as they would run in the same direction and with less force, and I should think, would be entirely destroyed by the battery current.
I submit this idea to the consideration of those more experienced in cables than I am, as, though it is only an idea which I have no chance of testing by experiment, still, everything should be tried which would render such an important undertaking successful.
G. S.

Montreal, C. F., November, 1858.

Iron Girders.

Messrs. Editors-In the issue for November 6th, and others, of your valuable journal, I read with much interest the articles headed as above, and was not a little surprised at the new theory there advanced, as I had always considered Hodgkinson and Fairbairn unquestionable authority in such matters. The following quotation, however, would throw a doubt on the result of their experiments:"The pressure of a load on the upper side of a beam must extend downward through its entire depth, producing vertical pressure on every possible horizontal line or plane within its depth, equal to the weight of the load, and finally result in the pressures on the bearings under its ends. This simple statement, so obviously true, ought to be sufficient to Only the the absurd notion of a neutralaxi." unlike all other beams, must on no account be permitted to attempt any deflection from the strain of the load, because when it does, the top flange will suffer from compression, and the lower one from tension, gradually diminishing in intensity as they approach each other, the point where the two are expended must necessarily be free from strains, and therefore $i s$ correctly cailad the neutral axis.
The parallel rib and flanged girler alluded to is well known by engineers not to be in strict accordance with the theoretical requirements of strength, but as a general thing, the convenience of the shape for all building purposes, and the facility afforded in the manufacture, especially if of wrought iron, is a suf ficient apology for the excess of material.
The mode recommended by your corres pondent to convince the doubting of his theory, by dividing "a beam horizontally in two parts, in any line where they suppose the neutral axis to be situated. Then if they will place their hands between the upperand lower parts thus divided, they will become painfully impressed with a conviction that the supposed neutral line is not free from pressure." Cer tainly a very novel way of appealing to their senses, only there is one little difficulty to be
overcome before it could be done. The divercome before it could be done. The di
riding a beam as recommended, would, un fortunately, produce two beams, with two compressing and two extending surfaces, and in putting their hands between the two, they might, perhaps, get them hurt. It is however, hardly likely that the admirers of Hodgkinson and Fairbairn could be induced to sub mit to such a test.
Baltimore, Md., November, 1858.

Salt as a Fertilizer.

A correspondent writing to us from Kanawha, Va., where the Salt Springs are located, requests some information regarding common salt as a fertilizing agent. He says in reference to it, " that it is no doubt a valuable agent when properly applied, and were the facts generally known, they would be prized by a large class of your readers.'
Plants, like human beings, require for their sustenance and growth a certain amount of the constituents of common salt, and these must be furnished from the soil, in order to be taken up by the roots. If the soil in any district contains a sufficient supply of these substances, of course the addition of more salt would be of no avail. Fields along the sea
coast generally receive a sufficient quantity
of salt from the rain clouds which carry saline matter, and deposit it near the source whence they originate ; the lighter rains being free from saline matter are carried to a greater hight and wafted far inland. In localities remote from the sea, salt applied in moderate quantities to the soil is generally beneficial. Agricultural chemists, however, are not fully agreed as to the soils for which salt is most applicable, only that all soils should contain a certain amount of the constituents of salt, for the healthy growth of plants, such as about five hundred pounds to every acre, taken at a depth of six inches. To determine he amount of salt in the soil, the following will be found sufficiently accurate forall common purposes. Take half a pound of dry soil, and wash it with two pints of cold distilled water, then filter it through paper. Now, take a weak solution of nitrate of silver. and pour it into the filtered liquid. If there is salt in it, a white precipitate will be thrown down, which will acquire a purple color on exposure to the light. Dry this precipitate in an oven, and in every ten grains of it there will be four of common salt. If half a pound of dry soil yield one grain of salt it will conain 500 pounds in every acre, six inches deep. On inland meadow lands, especially those which are somewhat old, salt supplied as a top dressing, at the rate of fifty pounds to t 'le acre has been found very beneficial. All farm yard manures contain considerable quantities of common salt, and where these are applied as a top dressing, salt is not generally required. Heavy saline rains from the Atlantic do not generally reach beyond the Appalachian chain of mountains, therefore common salt as a fertilizing agent, we think, may be used with advantage on all lands west of these elevations until we come to the Rocky Mountains.

Purifying Coal Gas.

In manufacturing gas from bituminous coal, sulphureted hydrogen also passes ovex from the retorts, and this must be removed to render the illuminating gas fit for use. This has always been a difficult and expensive part of the process, but it is so no longer. A very remarkable patent case, in which this question was at issue, was recently tried before Baron Bramwell and a special jury, at Guildford, England. The plaintiff was P. C. Hills; the defendants, the London Gas Light Company. Hills obtained a patent in 1849, for the use of the hydrated oxyd of iron in separating sulphured hydrogen from the gas, also tor renovating the oxyd of iron after it had become saturated with sulphur, so that it can be used for the same purpose repeatedly. The defendants admitted the use of this material for purifying their gas, but contended it was not the invention of Hills, but of A. Laming, who had secured a patent in 1847 for effecting the same object. The jury, however, gave a verdict for Hills, it having appeared to them that it was an hydros, nothydrosoxyd, which Laming described in his patent.
We direct attention to this subject principally to suggest to all the gas companies in our country, who use coal containing sulphur that they employ hydrated oxyd of iron as an effectual and cheap purifying agent. The way to prepare it is to dissolve the sulphate of iron (copperas) in hot water, mix it with the milk of lime, allow the precipita te to settle, pour off the clean liquor, and expose the precipitate to the airfor a few days. By such exposure it becomes an oxyd, and in a moist state is employed either by itself or mixed with the sulphate of lime. The gas to be purified is passed over the oxyd in a close vessel, either before or after it has been passed through the lime purifyer on its way to the reservoir. This hydrated oxyd will only absorb a certain quantity of sulphur, after which it must be exposed to the atmosphere for some days, or else heated in a furnace until it becomes red hot. This action drives off the sulphureted hydrogen from it, and it can then be re-employed for the same purpose.

 munications.
H. C. G., of Philadelphia.-Common indelible inkmade by dissolving nitrate of silver in a minute quanon porcelain labels for flowers and plants. Keep it in a dark place or in a blue bottlewhen you are not using it. If this in
black paint.
A. P. L., of mll .-Air is doubled in volume by a temperature of $491 \circ$ Fah. A cubic inch of air heated to 3000 expands to $1 \cdot 610$ cubic inches.
A Youn Reaner-The reason why rain water is
soft, is because it is not impregnated with earth and soft, is because it is not impregnated with earth and
minerals. It unites freely with soap and dissolves it, minerals. It unites freely with soap and dibsolves it,
instead of decomposing it as hard water does. It is difficult to wash your hands in hard water, because the soda of the soanp unites with the sulphuric acid of the hard water, and the oil of the soap with the lime, and
floats in flakes on the top of the water. foats in flakes on the top of the water.
L. P. S., of Conn.-The helices of

> L. P. S., or Conn. -The helices of magneto-e. machiues are made separate from one another.
R. C. D., of Pa... inquires why it is that flame will not pass through the very fine wire gauze used in miner's lamps? Answer: Simply because the metal wire is a very rapid conductor of heat, and when the
fame of gas burning in the lamp reaches the wire flame of gas burning in the lamp resches the wire
gauze so much heat is conducted away by the wire that the flame is extinguished.
L. W. B., of Conn.-Your new method of laying out a race course so as to equalize the distance to be run by the horses, would not be the subject matter of a patent;
in other words, it is not an invention within the mean in other words, it i
ing of the statute.
P. M. E., of N. C.-Sharp's rifles will answerforsporting purposes. We thank you for the high opinion you
express of this journal. You are one of its oldest express
patrons.
G. O. E., of New Orleans.-Address F. H. Smith, of Baltimore, Md., upon the subject of brick-making.
J. M. C., of Ohio.-The idea of wrapping the J. M. C.. of Ohio.-The idea of wrapping the con-
ducting wires of submarine cables around a core of gutta percha is good, no doubt, bat you havebeen anticipated.
J. M. W.
J. M. W., of N. Y.-" Dick's Practical Astronomer" Will give you such information as you ask in reference
to small telescopes. G. M.. Jr., of N. Y.-Your project of making a water light is chimerical. You caunot decompose water in a glass lamp by the action of
ing down into the liquid ing down into the liquid.
J. E. B., of Cal. -We
J. E. B., of Cal.-We have entered your name for
one year's subscription. We have no confidence in one year's subscription. We have no confidence in
fish-catching recipes. We consider them mere traps to catch human gulls in.
W. S., of Olio. - We do not call to mind any decision
of the United States Curts in of the United States Courts in reference to the validity of B. F. Pilmer's artificial leg patent. Your drain
tile machine seems to be new. You had better send us a sketch and deecription of it. The subject of draining land will acquire, we think, additional interest every year, and it deserves attention. Experiments are now in progress on some of our southern plantations. where draining is almost a necessity. The earth needs air as
well as moisture, aud the rrain tile assists in this rery Well as mois
essentially.
H. H. S., of Gr.-The reason why sap ascends through the tubes of a plant, is because of capillary at-
traction, assisted by light and heat, and when these laction, assisted by light and heat, and when these
lose their power, the juices again descend by the same tubes. It is legal to tender for debts all gold coins at their reeppective values for any amount ; the half dollar, quarter, dime, and half dime for debts of any
amount under five dollars ; three cent pieces for debts of any amount under thirty cents.
E. G., of Washington City.-The art of drawing is
coeval with civilization coeval with civilization itself. Oil painting was, how-
ever, invented by Van Eyck, a Flemish painter, in ever, invented by Van Eyck, a Flemish painter, in
1415. The first oil painting ever made is now in the Cathedral of Ghent, in Belgium; the subject is "The ascension of the saints to heaven." From that time pictures executed by these new processes were in such request from foreign countries that the painters of that country could not execute them fast enough. The art
was also extensively practised in Italy in the 15 th cenwas also
tary.
B. A.

Rk. A., of Ohio--We have carefully examined the
sketch and description of your alleged improvement in harvesters, and advise you not to apply for a patent. You will find substantially the same thing illustrated and described in Volume \mathbf{X}, page 184, of the Sor. Am.
This volume contains a valuable history of this class of inventions. In reference to engravings, we prefer to have our artists prepare them when intended for our paper. We should probably charge less for them than you would have to pay in your place, and they would
be superior in quality; besides this, we would publish be superior in quality; besides this, we would publish
them in the Scr. Am. free of charge. them in the Scl. Am. free of charge.
of the Sol. Am., in an item on this subject, we estated that a gun recently tried at Castle Island, near Boston, was made by Messrs. Aller \& Co. ; we should have said Alger \& Co. We míght also add that the one tried by the Bureau of Ordnance at Washington, and there is every reason to believe the other twenty-nine are just as strong and good.
Jut as strong and good.
W. W. R., of - The blades of the propeller in the Winana' steamship are not fastened to a water tight
drum, but on ac entral shaft, the water having fres ac-

Sciontifir Amcrican.

cess all around and about them. Of course she must require less power to propel than to upset, or else she
will turn round like a porpoise at play. As you say will turn round like a porpoise at play. As and having two propellers revolving in opposice direction We are given to understand that her first trip is to be to New York. If she arrives here, we shall asturedly go and see her, and then we will be able to give a move decided opinion of her merits or demerits
we been the first successful patentee in coms with the iron manufacture in England. The gradua exhaustion of the supply of wood from the forests le naturally to the substitution of some other fuel than one Simon Sturtevant for making iron with pit coal He was compelled by the king to publish his discov eries, which he did in a book called his "Metallica." His invention was a failure, and he surrendered it the following year. In respect to Lord Dudley s patent although he was ablet.o make only about three tuns ofmonopolies, his patent was exempted although it me with much opposition.
Letter Writing.-We are in the habit of considering ourselves the greatest reading and writing people in the world; we are certainly not the latter, for while per annum (upon an average of ten years) by mail, the inhabitants of Great Britain send 17 letters each per annum. This is accounted for in some measure by the superiordelivery arrangements in large cities, the rate being only two cents, delivery included, all over the J. P.
bles of Joseph Dixon, Jersey City, N. J.
A. T., of Pa.—Use copal varnish for japanning you tin, and dry thoroughly in an oven heated to 1800 , and yon will be successful. The reason why your japan is so easily scratched with the finger nail is owing to its
not being sufficiently dry, or perhaps you have used too not being sufficiently dry, or perhaps you have used too
much turpentine in it. Varnishes may be colored with any of the pigments used in oil painting.
H. D. T., of N. Y.-To "case harden" iron, make paste with the prussiate of potash and a little water apply it to the sarface of the article, allow it to dry, then insert it in a clear fire until it assumes a low red color, when it should be taken out and dipt in cold
water. This process converts the surface of iron into steel. Iron is burnished with a polizhed stecl tool called a " burnisher," which is rubbed hard over its surface. The file marks on the article must be previously removed with emery. Etching, not engraving, is ex ecuted on steel and copper plates with dilute nitric acid. The outlines of pictures only are thus traceed
assist the engraver. O. M., of Erie, Pa.-The common rule forcalculatin gether the area of the piston in inches, the number o pounds pressure of stcam per inch in the boiler, minns four pounds deducted for friction of engine, and the elocity of the pistonince is the number of pounds horse is capable of raising one foot per minute. The ower of your engine thus calculated would be 782 (inches, area of piston) multiplied by 46 (pounds pres are of steam) maltiplied by 320 (speed of piston in fect per minute) divided by 33000 , equal $343 /$ horses power.
It is proper, however, to state that, owing to the difiter ence of pressure ia the boiler and cylinder, this is very usgatisfactory calculation, though the best that can be made without an inuicator, which is an instrument for taking the pressure of the steam in the cyliu der througliout the stroke. The averace of the pres that above given in the same way as the boiler pressirn ives the most correct estimate of the power of an en gine that can be obtained by any other means than a
ynamometer. The proportion of grate surface con monly employed in small boilers is about a square foc per horse power, and a square yard of the surface. In is used. Jass, A. Me warm soap suds.
O. O. B., of Ill.-We cannot advise you to make any ion of doubtful novelty as tocrisk all your hard ear ngs on t advance the funds, you had better defer the matter. C. G., of Tenn.--For information about a bolt and rivet machine address Bassett \& Bateman, of Cin-
cinnati, Ohio. We believe they have a good invention cinnati, Ohio.
forthis purpose.

Money received att he Scientific American Office on Saturday, November 20,1858 :-
W. M. or Md., $\$ 30$; G. W. P., of L. I., $\$ 30$; C. A.
., of N.Y., $\$ 20$; W. Y. G., of Ky., $\$ 10$; N. D., of N
 H. M., of Ky.. $\$ 30$; J. D. F., of Ala. $\$ 33 ;$ R. B., of N.
Y., $\$ 25 ;$ T. H. M., of La., $\$ 25 ; G$. W. F., of Mass.,
 $\$ 55$; J. L. W., of N. Y., $\$ 25$; J. M., of L. I., $\$ 30$;
E. T., of N. J., $\$ 37$; W.W.L., of Ohio, $\$ 230$; G. S., N. H., $\$ 30$; J. T., of Ohio, $\$ 25$; R. G., of Md., $\$ 107$;
C. \&F., of Me., $\$ 30$; G. G., of Ill. $\$ 55$; J. F., of Pa., C. \& $\mathrm{F} .$, of Me., $\$ 30$; G. G., of Ill. $\$ \$ 5$; J. F., of Pa.,
$\$ 30 ;$ H. F. W., ofIll., $\$ 30$; E. O' C., of N. Y., $\$ 30$; O.

Specifications and drawings belonging to parties wit Patent Office during the week ending Saturday, Nov 0, 1858 :-
t. н. M., of La.; t. R. Van G., of Pa. ; t. t., Ohio; C.A. B., of N. Y.; J. Y., of Pa. ; H. B. T., of
Wis. ; G. W. F., of Mass.; N. D., of N.J. ; R. G., of Wis. ; G. W. F., of Mass. ; N. D., of N. J.: R. G.,
Md. ; A. K., of N. Y.;
Gs., of N. Y. (two case.) :
 work, perraps, from its astound ing eftrcts, the greatest
litreray curioity of he age. The introduction gives
in the arguments, pro and con for its authenticit
 delusion of the nineteeth century, it is ce:titity worth
perusual by yal. We, of course, do not recommend
hhe dutctions which are made from it , but simply
hink it is worth the deductions which are made from it, but simply
think it is worth reating from the astounding noral
phenomena of which it has been the cause. Bertram Nosi. A. Stay for Youth, by E. J. May.
New York: D. Appleton Co, Broadway. This is
 both sexes. The characters are well drawn and if
thare be the sliehtest f falt to find, it ith that it termi
nates too abruptly, and there is not enough of it. Tae Edivivrgh Review-L. Scott \& Co., 79 Fulton
treet, New York.-The Octobor number of this fine old

 splendid article on Ind Indian Heroes, and another on
The Newmon, and his Eccesiastical Critics, in in which
the orthodoxy of English theological schools is com-
pletely demolished.

 vice on moral subiectats, and plenty of vacuab, good aad
vedge. Every abriculturist should have one. Halu's Journal of Healith. No 3 Everett H Huse,
 a Word to our patrons Receriprs-When money is paid at the office for sub-
scliptions, a receipt for it will always be given; but when subscribers remit their money by mail, the may consider the arrival of the first paper a bona ת
acknowledgment of the receipt of their funds. Post Office law does not allow publishers to enclos receipts in the paper.
Back Nonsers.-It has been our custom in years past to send the back numbers of our paper to all who sub
scribe during the first quarter of the volume. Thi scribe during the first quarter of the volume. This
system has given satistaction heretofore, and we shall continue it on this volume, unless the party subscrib who do no not care contrary when he remit. their volumes complete, can have their subscriptions commence at the time of remitting by signif ying such a desire.

TERMS OF ADVERTISING Twenty-five cents wer line earh insertion, twe re pectfully request that our ratrons will make thecir ad
pertiscmente as short as possible. Engrewings carno be admitted into the advertisins columns. ***)
IMPORTAN' TO INVENTORS A MERICAN AND FOREREN PAATENT

 ventorsand otherswho may visit Washington, having
business at the Patent Office, are cordially invited to
call at our office Iuventors stilid do well to bear in mind that the English
Iw does ot limit the issue of patents to inventors. An law does n ot 1 limit the issue of patents to in ventors. An
one cant take out apa tent there. We are very extensively erryg od in the preparation
and securing of patents in trion yinious European coun

 Co be pursued in obtaining patcontsthrough our A hencs
the requirementsoi tue Patent Office \&c.. may be had
gratis upon application at the principal office or either the requirements
grativuponanplic
of the branches.
The tnnexed letter from the late Comunissiouer of
Patentswe comnend to the perusal of all persons 11.
terested in obtainink patents :terested in oltaining patents :-
Misgre. MusN \& Co. I Iake pleasure in stating that
while I held the office of Commissioner of Patents,

 nd rennittances should be addres
No. MUN \& COM PANY, 128 Fulton street, New'York.

A MESSIEURS LES INVENTEURS-

T Till

 whom Agents wanted in all parts of the country, to
whate topies will be sent postpaid for $\$ 2$, ,and
terms.
quantities by express on still more favorable

 wenty years practical experience. Good references
can be yiven. Address W. W., Box 309 , Salem, Mass.
$123^{\text {g }}$

SPECIAT, NOTICE-OUR CLIENT, JAMES Company in the of Gnitesow, having transterred to a the the exclusiveright to
use in the United States his patent for making coal, which patent was issuad by the government of the
Unit ed States on the 23 day of March. 1852 , Unit ed States on the 23d day of March. 185, and Mr:
Young having guarated to such coupay that he
will sustain and defend the said patent anainist all per-

W vited to serict-A Quarter UNNDIPotato Planter. To a party prirchasing, most advant
 hoe; nnd dia a corn platater it it equally good. Apply
to E. V. HAWLEY, New Haven, Conn.
In

FOR ONE STAMP-SEEVENTEEN ANATOMI-

FOR SALE-A FIRST- RATE FIFTEEN-HORSE

OHN WW. ©UIVCY \& CO. MMPORTERS AND
 10,000 AGENTS WANTEM-TOO SELL

WATER POWER ON A GOOD STREAMI,

MODELS FOR THE UNITED STATES

FOR SALE-SECOND-HAND MACIMNISTSY

BARLEL MACIINERY - THE UNDER-

ERE, ,nd Gor machinery and
为
nor to tany other thay
HRLER Whichy Mr
20000000000
med

THE Works OF THEAEBNGAS CO;

 M MEMNE BELTNGE, DTEAM PAGKiNG:

 No. 9 Gold dreet, New Yorl
SECOND-HAND MACHINSTO MOMLS

 PECios patevi miop press-all

W ARTHSEMLEACTNG Woob-TURN

