WORKSHOPS OF MANCHESTER, ENGLAND.

BY MR. JAMES G. FLETCHER

Forty-five years ago, at the commencement of the writer's career as a mechanic, tools were of a very rude and primitive description, the lathe and drill being about the only ones then in general use; slide lathes were possessel only by a few persons, being made with great labor and expense, and rery inferior in point of workmanship.
The introduction of the planing machine, however, and its subsequent development, effected an entire cbange in the manufacture of torls and machinery of every class, giving the means ot carrying out with facility many works which had been lefts unattempted previously as too expensive or impracticable, and opening the way for improvements and invention generally; and in a short time these machines became indispensable in every workshop. The slide lathe became then comparatively easy of manufacture, and, in conjunction with the planing machine and selfacting dr:ll, formed a most important feature in the advancement of engineering work. Still, much remained to be effected; a large proportion of work was done by hand, especially the smaller portions of machinery, untill slotting and shaping machines were brought into use, and special tools adapted for all parts where quantity of work was required to be produced. By the gradual introduction and perfecting of the regulator screw, the wheel cutting engine, standard gages, large surface plates, long straight edges, and scraped surfaces, combined with the improved tools, not only was the amount of manual labor consider ably diminished, but the work was done more expe ditiously, and a much greater degree of accuracy was attained, whereby the workmanship, in all classes of machinery was remarkably improved, and at a great reduction in cost.
Another important feature in connection with improved tools, is the direct application of steam power to individual machines, especially those for the purpose of punching or shearing plates or cutting bars, etc., iy the combination of a small steam engine with each machine, thus rendereng the machines portable entirely selt-contained, and independent of other sources of driving power, and lhereby saviug, in many instances, the neccesity of running a large engine and quantity of slafting to irive only one or two machines when pressed for the work upon which they are engaged, and entirely dispensing with shafting and the usual attemlant expenses. By this means, and by the use of an under-ground steam pipe with branches at convenient points, either in workshops or along the sides of docks, these machines may be moved alout to any part required, and thus obviate the inconvenience and loss of time in carrying work to and from the machines. Steam pipes of great length are now being usel, and are found very satisfactory for purposes of this description; and this plan makes a much more convenient and less costly arrangement than shafing, which requires constant attention.
In the earlifr construction of the lathe, the slide rest was the first great step toward the principle of the slide lathe, and no doulit led to that invention, which was considered impractica'le before planing machines were made of sufficient magnitude to plane a lathe bod of even small dimension. A lew slide lathes had indeed been made, the bed of which were composed oi a timber framing, cevered with iron plates on the upper side to preserve the surface, similar to those which were previously used for the ordinary land lathes, with the exception that the outer edges of the iron plates were made of suitable shape to form the Vs for the carriage to slide upon. It was not, however, until some time after the introduction of the planing machine that (the cost of workmanship being considerably lessened)slide lathescame into general use, and their utility was fully acknow'edged, and attention directed to their improvement.

The application of a screw to the slide lathe, so as to rencier it capable of both sliding and screwcutting, was the next important improvement; and a great amount of time, perseverance, and capital was expended by a few persons in endeavoring to perlect this portion of the lathe. A short screw was first made, as accurately as possible with the rude means then possessed, from which one was cut double
the length, by changing the turned bar end for end in the lathe after cutting one-balf. Subsequently, by following out this principle, screws were capable of being made of any length required.

After this, the surfacing motion was introduced, and als. the use of a shalt at the back of the lathe, in addition to the regular screw, for driving the sliding motion ly rack and pinion, instead of both the motions of sliding and screw cutting being worked by the screw alone; for it was found that the threads of that portion of the screw nearest the fast head stock, being most in use, were worn thinner than the other parts; and, in consequence, the lathe did not cut a long screw with the degree of accuracy which it otherwise would have done.
Thus, step by step, improvements were gradually brought forward; the fore jaw and universal chucks and other important appliances were added, so as to render the lathe applicable to a great variety of work, even cutting spiral grooves in shafts, scrolls in a faceplate, skew wheels, and also turning articles of oval, spherical, or other forms. The duplex lathe, with one tool acting in front and the other behind the work, is also found to be a very useful arrangement for turning long shafts, cast-iron rollers, cylinders, and a great variety of work, where a quantity of the same Find and dimensicns has to be turned.
The planing machine is one of the most important tools in use, and has done more toward the advancement and success of engineering work than any other invention, with the exception of the lathe, and has passed through a great number of changes since its first introduction down to the present time. In the first planing machines the table was moved by a chain winding on a drum, as in the old hand machines; this mode was found to be very olijectionable, the cut was unsteady, and, when the tool was suddenly relieved at the end of its cut, the table had a tendency to spring forward; it was also driven at the same spred both forward and backward, and thus a great loss of time was occasioned. This was much improved upon by the use of a rack and pision. arranged to give a quick return motion, and also afterward by the screw arrangement.
In some of the earliest planing machines the Vs were made inverted, evidently with the idea of preventing any cuttiogs that fell upon the wearing surfaces from remaining upon them. They proved, however, to possess no alvantage even in this particular, as the finer portions oi the cultings still adhered; and in aldition it was found that, from the motion of the table, the oil, by its own gravity, would not remain upon the surfaces, and thus caused them to cut and wearaway quickly.
The writer has in use a planing machine, with a bed 54 feet long, the Vs of which have two inches of surtace on each side, and are planed to an angle of 85 degrees. This machine has been working upward of twenty years, and tor the last six years both night and day. It has been employed during the whole of that time upon very heavy work, ranging from 5 to 20 tuns. The Vsare still in good condition, apparently very little worn, and the work the machine does is at the present time pertectly true. The Jed is in three parts jointed and bolted together, and the table in two parts,since, at the time it was made, there was no machine capable of planing a very long piece, and this was considered to be one of the largest then in existence.
The planing machines were further improved by the use of two tool-boxes on the cross-slide, and by the application of slide rests or tool-boxes fixed upon the uprights, self-acting vertically, for planing articles at right augles to the tools on the cross-slide. The reversing tool-box is a very ingenious and useful contrivance for planing flat surlaces; but that plan is not so well adapted for general purposes. Planing machines have, like other tools, been specially adaptted to a great variety of work, and the writer has made them with different numbers of tools, up to as many as sixteen, all of which were in operation at once.
The great changes which bave lately taken place in the manufacture of wrought-ir $3 n$ and steel ordnance, and the revolution they have caused in the coustruction of vessels of war, have called into recuisition a great many alterations and adaptations of the present machines, as well as many entirely new ones. The planing machine especially has been called upon to
do work of a very curious and intricate character, namely, that of planing the edges of armor plates to different curves, shapes, or angles. In most cases this has been accomplished by a pattern bar of iron or steel, placed on edge in a small chuck fixed upon the surface of the table, adjustable by set screws, and shaped to the form to which it is required to plane the edge of the plate; as the table travels, this bar, which runs between two circular rollers altached to the under side of the cross-slide, moves the tool sideways, according to the amount of curve in the shaper or guide bar, the tool-box being disconnected for this purpose from the screw in the cross slide.
A duplex planing machine, made by the writer, is arranged with double beds and double talles, each table having a separate set of gearing, with starting, stopping, and feed motion. There are two tool boxes on the cross-slide, each of which is independently selfacting, so as to work with its own table. Thus the two tables may be used separately as two smaller machines working independently of each other, and capable of planing different lengths of work at the same time; or when planing a large article, the two tables, gearing and motion, may be coupled, so as to form one larse machine, an arrangement rendering the machine capable of doing a variety of work. Also one table may be tixed stationary as a bed-plate to boll awkwardly-shaped or long pieces of work upon, while they are planed by a slide rest fixed upou the other table. When used as one machine, both sets of straps and gearing are in operation, and are reversed by the stops of one table only, so as to insure the straps moving at the same time.
This machine is capable of planing articles 10 teet wide and 10 feet high. The racks on the under side of the tables are 3 inches pitch, with steppedteeth; the wheel working into the rack is 3 feet 9 inches diameter at the pitch line, and is driven by a smaller pinion. By this arrangement a steadior molion is obtained; and also the pulleys and driving gear can be placed entirely behind the face of the uprights, so as to leave the front of the machine perfectly clear, that the straps may not be in the way when laking the work off and on. The pulleys being below the ground line, may be driven ty a horizontal underground shaft at the back of the machine, and no atrape iwfil then be visible. The writer has made machines ol this description with beds 40 feet long, so plane work up to 14 feet in wilth.-Newton's London Journal.

ENGINE-ROOM SKYLIGHTS.

In the autumn and winter of 1862 and 1863, when so many Baltic steamers were lost, we pointed out, from the facts reported bearing on eich disaster, that most of them foundered from the seas breaking through the engine-room skylights, putting out the fires, and thus stopping the machinery. As the engines work the bilge pumps the ships cannot be kept free, for the water taken in-board is so great that is impossible for the deck pumps, worked by hand, to keep) it under. We stated our opinion then that no steamer ought to be sent to sea without having means at command to secure the deck openings, and we see no reason to alter our views. The London might have been pursuing her course in safoty across the ocean at this moment, could the water which rolled over her bulwarks have been kept out of the eugine department. It was, no doubt, thought that in so large a ship the waves talling in-board would never create such havoc, and that the fastenings of the skylight were sufficient for a vessel of her size. Events Lave proved that the weight of water tumbling ou a ship's deck will smash stout glass and comparatively light frames, even though there is a covering of tarpaulin. The skylight of the London was 12 feet 6 inches by 9 feet 6 inches. The frame or sash was of teak wood, over three inches chick, and it was glazed with halt-inch glass, each plate 12 inches by 9 inches. To protect the sashes from damage, there were round iron rod bars, forming a grating in the manner so commonly to be met with. This skylight slid in a rabbit of one and a-half inch, and the combing was of teak, rising sixteen inches from the deck, and five inches in substance. Such a skylight was sufficient for fine or moderate weather, but not adopted to withstand the force of such seas as were dashed by the wind against it. Wavesin bad weather sweep ships' decks,
and carry away boats, cooking-houses, and deck spars; but so long as a vessel keeps tight, and tlip water is carried off through the washboards and scuppers, there is no danger to the hull. The mischief arises when the water from above falls below in quantities that canoot be pumped out fast enough to keep the ship buoyant, as in the case of the London. Mr. Greenhill, her second engineer, states that, when the sea broke aboard, some of the glass and teak tell into the engine-room, which afords strong evidence of the power of a body of water, when projected violently against an object, to sweep all before it It may be argued that the skylight o! this ship was weak; but, it we compare it with other vessels of greater tunnage, we shall find that is above the average strength. The London might possibly have made many voyages, and even been worn out in the service, without her engine hatchway being put to such a severe test. But where a ship is caught in a hurricane at sea, she is sure to be well battered with the waves, and there is no provision that can be maide to prevent the seaz from breaking against her and falling over the rail. Everything on deck, there tore, that acts as coverings to keep the water from the hold, should be firmly fixed. The cargo hatches are always covered and battesed down, and, not rising many inches above the flooring of the deck there is very little leverage for the rollinir water to act upon. It is different, however, with lofty saddle skylights. They are struck from the sides, and the ear; at times fall perpendicularly from a great himht.
Mr. G. J. Gladstone, sen., Surveyor to the Port o London, when questioned, said that he considered the bars of the skylight and the tarpaulin a sufficient protection, and that it did not occur to him to have slides or hatches. Mr. Maxwell, the foreman of Messrs. Humphrey \& Tenant, the makers of the ship's engines, in reply to a question, said that hatches flush with the deck could net have been used in the London, without interfering with the action of the piston rod; and Captain Ifarris reall an extract from a letter of a crentleman connected with a shipping establishment, in which it was stated that there was nothing superior to the tarpaulin, for there had never been an instance of any of the eks lighis of the Compan's ships being iujured by a sea. The Surveyor, Engineer, and Superintendent are re presentatives of their classes. One did not look to cugine-room fastenings for hatches; the second tells us of the piston roci being in the way; and the third belongs to a fortunate company who have never lost a ship from the fires boug put out, and reasoning therefrom, cannot briog himself to believe they ever will. Perhaps Mr. Gladstone is now of opinion that some security of the character here alluded to is de manded. As for the piston rod preventing slides from being drawn flush with the deck, such an objection is frivolous. The London bad pumps sufficient to throw out 4,000 gallons per minute. If an aperture had been left open to admit of the head of the rod and crank working through, the engine power would have freed the ship faster than it could have flowed down such an opening. But a box frame over the piston rod would have shut out the water taken in that way. There may be a difference as to the way protection should be given to skylights, but there is no insuperable difficulty in the way. It were better to put out the fires and trust to canvas, where there is plenty of sea room, than to lose a ship and all on board, because the air is excluded on an emergency from the engine room. But there are methods of obtaining artificial drafts of wind by mechanical aid, if the furnaces cannot be kept alight when the skylight is closed. On board the American iron-clad monitors, fans are used tor this purpuse, and likewise "blowers." Sufficient air can be generated to get an up draft, enough to supply combustion in the furnaces by a light iron rod, with a wheel for carrying a coupling band and a, few vanes. In a strong gale of wind, however, a couple of iron pipes, with mouths like a wind-sail, would convey sufficient air down into the engine room to create a current to the fires. Those who have been on board the Great Eastern will remember that her engine-room skylight is a space of enormous extent, with nothing but glazed sashes. When this ship was under construction she was to bave defied the elements; but this monster can roll, in a beam sea, and there may be occasion for a covering to her skylights. But managers will
say, "The seas don't break the skylights of our ships," and therefore, steamers will now and then go down and create a panic. True economy lies in gising security at sea to those who have to travel by ships. A trifling outlay will make all the difference bet ween a safe and an unsate ressel.-Mitchell's Steam-Shipping Journal.

NOTES ON NEW DISCOVERIES AND NEW APPLICATIONS OF SCIENCE.

peroxide of hydrogen.
Peroxide of hydrogen is a compound of hydrogen and oxygen and cobtaining just twice the proportion of the latter element that water contains. As it is a very unstable compound, readily giving off its sec. ond equivalent of oxygen, it would be of considerable use in some of the arts, as an oxygenatt, if it could be obtained tolerably cheaply. Hitherto it has been produced only by the aid of peroxide of barium, and the process of producing it has been at once costly and exceedingly tedious, When peroxide of barium is added to a dilute solution of hydrochloric acid, kept cool by the vessels containing it being surrounded by a freezing mixture, the barium of the peroxide unites with the chlorine of the hydrochloric acid to form chloride of barium, one of its two equivalents of oxygen combines with the hydrogen of the hydrochloric acid to form water, and the other equivalent of oxygen combines either with the water thus firmed or with an equivalent of the water originally present, forming therewith peroxide of hydrogen. To obtain by means of peroxide of barium, however, an at all strong solution of peroxide of hydrogen, after neutralizing with peroxide of barium a dilute solution of hydrochloric acid, the barium must be precipitated from the resulting chloride of barium l,y means of sulphuric acid, added drop liy drop until slichtly in exzess; the precipitate of sulphate of barium must be separated by filtration, more peroxide of barium must then be added to the filtrate, the barium of the tresh portion of chloride ot barium thereupon formed must be precipitated and separated as hefore, and these successive operations mast be repeated very many times-the hydrochloric acid used heing finally separated by means of sulphate of silver, and the sulphuric acid by means of caustic baryta. Hofmann has just found that a strong solution of peroxide of hydrogen may be obtained by a much simpler method than this, if peroxide of potassium be used instead of peroxide of barium. This method, indeed, involves only a single operation, consisting simply in auding peroxide of potassiumformed by directing a current of air, by means of a bellows, on to metallic potassium in a state of fusion -to a somewhat concentrated solution of fluosilicic acid. Silicofluoride of potassium, which precipitates, and a strong solution of peroxide of hydrogen, are the results. This process is very simple, bat unfortunately, its involving the use of metallic potassium cannot but prevent it from yielding peroxide of hydrogen cheaply enough for use in the arta.

> tie specific gratity of alconol.

A Russian cbemist, M. Mendelejeff, lias just published the results ot a series of very laborious researches with respect to the specitic ${ }^{\text {gravety }}$ of absolute alcohol, and ot the various compounds of alcohol with water. Curiously enough, these results go to show that of all previous deierminations of the specific gravity of alcohol and its hsdrates, the oldest being those made by Gilpin, in 1794, are the mosi accurate.
M. Mendelejeff's experiments far transcend in ac ruracy all previous ones upon the same subject, their author having taken into account every possible source of error, and baving bestowed the utmost pains upon ascertaining the magnitude of each. They show that at the zero of the Centigrade scole the specific gravity of absolute alcohol is 0.80625 at $5 \mathrm{deg} .0 \cdot 8027$, at 10 deg .0 .79788 , at 15 deg .0 .79367 , at 20 deg .0 .78945 , at 25 deg .0 .78322 , and at 30 deg . 0.78096 .
testing mineral oils.
The mineral oils used for illuminatiag purposes are usually tested, either by directly measuring their inflammability or by determining their density. Both these methods are inconvenient, and MM. Salleron and Urbain propose to substitute for them the measurement of the tension of the vapor of the oils-the
teusion of the vapor of any oll being of course proportional to its volatllity, and therefore to its infl :m. mability. In a reccut cornmunication to the Icademy of Sciences of Paris, these gentlomen des ${ }^{\text {ribibe an ap- }}$ paratus by which the tension of the vapor ot a mineral oil may be very readily determined, and thes accompany this description with "a tahle of the elastic forces of one and the same oil taken as a type, so that knowing, on the one hand, the tension of the oil to be tested corresponding to a given temperature, and, on the stber, the tension at this temperature of the typical oil, by comparing these numbers the value of the specimens examined can be deduced." Tbis methot is simple and convenient, and at the same time much more delicate than the methods previously in use.

FOREIGN INTELLIGENCE.

The Spectator insists that to secure house-room for the working class, their dwellings in great cities must be built into the air. The cost of the site must be distributed among many floors. Inside corridors can be superseded by broad, continuous outside balconies. Each tenant would thus possess a separate house, and the sense of living in a barrack, which workmen so much dislike, would be obviated. Such balcony streets, moreover, would be thoroughfares, and allow of supervision much more easily than corridors, while they would also allow the hard-working poor to open little shops above the ground floor-an impossibility with existing architecture.
Tripod Masts.- \boldsymbol{A} model of Captain Coles' tripod masts has been shown at Lloyd's. It does away with shrouds and stays, as the mast is supportel by two smaller ones. The advantages claimed are as fol-lows:-Saving of wear and tear of ropes, improved ventilation of ship, increased speed. Quicker voyages may be made in consequence of a vessel fitted with these masts being alle to sail sloser to the wind. The masts may be as readily cut away as wooden masts.
Considerable difficulty is encountered in procuring suita le timber in South Anstralia for durable telegraph poles, and it is recommended that the lines which require repairs should be re-poled with Swan River mahogany, as the local timber will not last, on an average, more than six or seven gears in the ground. Contracts have been accepted for this purpose, at 17 s . 10d. per pole 23 teet long.
The consumption of oil as a lubricator is immense. There are some railroad companies whose annual expenses are more than $\$ 25,000$ for lubricators alone. A single manutacturer in England (Young) testified in court to having manufactured and sold over 400,000 gallons of lubricating oil in one sear, at about one dollar per gallon. This oil was distilled from coal.
Experiments have been made at toe Hy the School of Musketry on gun cott n as applied to rifle practice. Excellent diagrams have been made at a range of 1,000 sards, hardly inferior to those obtained with the small-bore rifles of the day. The charge used, was 25 grains, and ten consecutive shots fired at 1,000 yards gave a mean radial deviation of 1.65 teet.
The Journal Du Havre states that during the vioient hurricane of the 11th, 200 enormous blocks of stone, placed in front of the breakwater a.t Cherbourg to protect it irom the action of the sea, were lifted by the waves and thrown over the wall into the harbor. Forty cannon planted on the pier were thrown into the sea. Such a storm had never before been experienced in that place.
The following is a good method of bronzing tin castings:-When clean wash them with a misture of one part each of sulphate of copper and sulphate of iron in twenty parts of water; dry and wash again with distillel vinegar eleven parts. When dry pcilish with colcothar.
Iron Churgh at Crewe.-The direc'ors of the London and North-Western Railway Company have just completed the erection of an iron church, to accommodate 300 persons.
Chlorate of potash is now extensively used in dyeing as au oxidizing agent, in brightening what are technically termed "steam colors."

