
R. H., of N. Y.-We notice your letter in relation to the asticleon the slide valve, and the criticisms thereon. Also you Inc:osed tracing. You are correct in one point, which is, that in the frrst diagram the eccentric is on the upper side. when in order to turn the crank as the arrow points it should be on the lower. This is not a material difference, as the main object was to show
the position of the eccentric with relation to the crank. In the the position of the eccentric with relation to the crank. In the
second diagram the same position is shown, as we well know, and second diagram the same position is shown, as we well know, an is there pointed out as an eirror surposely. The traciug of the exceptthat the parts in question as you have drawn them are erong and would rever wis if you will tabe the trouble to go wrong, and would riever work. If you will take the trouble to go on board a steamer you ca
correctness or our article.
B. C., of Del. -There are only two kinds of primers used In art llery service-friction and percussion. A percussion
primer is a quill full of fine vowder. capped bv a percussion wafer primer is a quill full of fine bowder. capped bv a percussion wafer
made of mealed powder and fulminate of mercury. A friction made of mealed powder and fulminate of mercury. A friction
primer is a tube full of powder, with a spur on top full of a comprimer is a tube full of powder, with a spur on top tull of a com-
position that explodes by fr ction, and is set of br by a wire pulled position that explodes by fr ction, and is set of by a wire pulled through it bes a lanyand or rope.
J. A. J., of Ill.--In summer the sun rises north of east and sets north of west. For his:yearly track through the heavens see a celestial globe.
T. M., of Conn.-A correspondent puts the following query:-" Suppose the piston in the middle of the cylinder, is there any more steam room on one side than the other! I shouid say not." You would be in error, then for the capacity of the upper side, supposing the englne to be vertical is less than lower by the dameter and lengtu tof the piston rod it . H. B., of Mas.--Whdows are crystallized, or made to mitate ground glass, by dissolving epson salts in hot beer or
a weak solution of gum arabic. You can make any pattern or border you please, by cuting out a design on a shleet of paste. board, and rubbing the design with a damp cloth.
L. W., of N. Y.-One kind of toilet rouge for the complexion is made by powdering isinglass, or "mica," and colcring the same with carmine
B. P., of Ill.-Rupert's drops are simply melted glass droppen into water. They form a bulb like a pear, with a stem. The thick end way be struck with a bammer without injury, but if sou break the tail the whole aftioir will explode.
J. R., of N. J.-The density of steam depends upon the pressure, and if the steam is saturated-not superheated-the No. 48 of our last volume you will find a table of densities of sat urated steam ar various temperatures, from 136° to 288°. At 13677° a pound of steam fills a space of $1322^{\circ} \mathrm{c}$ cubic feet; at $242^{\circ} \cdot 0^{\circ}$. a space of $15 \cdot 11$ feet; at $238 \cdot 25^{\circ}$, a space of 7.202 feet.
J. D. H., of Ill.-Find illustration of apparatus for distilling spirits of turpentine from wood on page 24, Vol. XI. It was Invented by Seth L. Cole, Burlington, Vt.
D L., of Pa.-Several different machines for mining coal have been described in the Eny!ish papers, but we do not know that any of th mm has been ppr
A. P., of N. Y.-You ask us to tell you all about making rods to find
all humbug.
Q. B. S. M., of Md.-Any good treatise on geometry will give you the information about the cycloid.
A. A., of N. Y.-It is quite common for different persons to have the same ideas. Your experience on this point wil probably prove
D. W., of lll.-Your specimens are common quartz, of no value whatever.
G. W. J., of Me.-A Blanchard lathe will make your toy boat complete, from stem to stern, out of a single block. Of the value of such a trade you must be the judge.
R. G. N., of Wis.-You can determine the altitude of the sun on land by means of a quadrant and an artificial horizon. Yor the arrangement of the latter, cousult a book on navigation. C. B., of Mass.-For Patent Report apply to your M. C. Patentees are not entitled to copres. You may get one as a favor A. A. H., of Me.-There is no cement in the world that will line a revolver cylinder, that is worn out, so as to make it us ful again.
W. E. C., of Conn.-We have no means of judging positively what amount of tuel you will save by a heater, but the economy will be great-certainly 10 per cenr. You can inject hot water to your boilers with a common pump, provided the same is so arranged that the feed water flows into it. Take a piece of oquare rubber, a quarter of an inch less than your stuffing box, wind this with cotton yarn-lamp wick-until the gasket so made its the stuffing box; cut it in lengths, so that it will meet at the ends, and pack the valve stem with it. A piece of lead pipe, with a prece of hemp gasket run through it, is a good thing to put in the bottom of the piston-rod stuffing box. The pipe must be ham mered square first. Put a common hemp gasket over it.
C. C. B., of Pa.-An idea is not patentable unless it takes some palpable form, as in a mach ne, a design or a new pro-
cess. Your proiect for operating balloons oy ropes-hauling them cese. Your project for operating balloons by ropes-hauling them down when they reach a certain altitude-has been practiced many
W. E. S., of Ind.-To make matches consult Vol. XII., where you will find a variety of recipes for the purpose. We are called upon sometimes to publish the same recipe an unreasonaoje number of timef.

Queries on Belts Answered.
Messrs. Editors:-I have read with much interest the various articles relative to belts. I have known of power being let by the inch of belt running 800 feet per minute, which is a poor way of letting power for the landlord. ' I have charge of an engine that runs 40 -horse power. It has worked as ligh as 65 horse power, by the rule of 33,000 pounds one foot high per minute with the same width belt, viz., 16 inches. It runs 1,600 feet per minute, which would make 32 -borse power according to theory, but practice shows double this power.
I submit the following answers to qutstions con erning belts in your last issue:-
In my experience I have found that a double belt would do the work with ease that a single one of the same width could not do. Mr. Arnoli's plan of running two single belts, one over the other, is new to me, but there is reason in it.
Belts that are soft on one side get crooked, so that in running they go nearly off the puiley, when the resistance of the machine that is driven causes the belt to slip off.
I never knew of a belt that did not run on a tight and loose pulley to twist. Some machinists make the tight pulley a little larger than the loose, so as to have a tight belt. Such a pulley is almost sure to twist the belt, especially if there is a space between the two, and the shipper is very near the pulley.
Opinion is pretty equally divided on which side out the belt should be run. A belt will drive more on the hair side. I think it will wear longer on the flesh side, as the quality grows better as it wears from the flesh to the outside.
Nothing in my experience is so good for belts as neat's foot oil, and but little of that.
A straight-faced pulley is much better than a crowned one. A crowned pulley keeps an unequal teusiou on the middle and adges of the belt. Crowned pulleys are only useful, in my opinion, to unskillful millwrights.
Lacings crossed on the inside are more liable to cut on each other hy the pressure on the pulley.
New York, July 20, 1865.
A. M. W.

Tempering Mill Picks.

Messrs. Editors:--In your journal of July 8th a correspondent wishes you to publish what you know about tempering mill picks. As he does not wish to pay for any one's experience, I will give mine gratis. A nill pick should be of the first quality of cast-steel, and should not be overheated; heat of a charcoal fire is better than stone coal. If' you use stone coal hurn out the sulphur before heating the pick. Heat the point and mass of the pick a straw color; sharpen and retine by dipuing your hammer into water, and hammer until nearly cold; heat repeacedly it neces sary; sharpen both ends betore tempering. To temper, heat very slowly and unitormly; heat to a light cbecry reci or dark straw; temper in a solution, say, to two gallons of clean water add halt pound of alum, one ounce of saltpeter dissolved; then ada as much clean salt as will dissolve; dip the point in the mixture as far up as you wish to temper; move it around until sufficiently cool, then rub the point briskly in the scales cn the anvil block, then plunge the pick in cool water before the temper runs down. It properly done you will have as good a pick as you wish tor.

A Mileer of Thirty Years' Experience.
Wiscay, Alleghany Co., N. Y.

The Main Spring Question.

Messrs. Editnrs:-On page 36, present volume, in the article on "Main Springs," etc., it appears to me that your correspondent is increasing, rather than diminishing, the liability or the main springs to break. It the spring is thicker in the center, or raised, as he says, having to bend around the arbor and itselt, it would have the tendency to fray isself to pieces by the center being the larger and the sides the smaller arc of a circle. The same may be said of the flat spring; that the outside of a spring is a larger arc of a circle than the inner, by the differenc ?
of the thickness of the spring, but in the proposed spring it is increased by the difference in addition to the thickness by the hight that the center is raised. The proner spring would be stronger, but would, I think, possess this aadditional cause of self-destruction. My observation is that the changes of the wind have more to do with breaking main springs than any thing else; let-the wind suddenly change from nortb or northwest to east or southeast and I expect and usually find a harvest of watches with broken main spr.ngs, those that have been in ten, fifteen, or twenty years, equally as well as those that have been in only as many days. And it does not make any difference, either, that the watch was in the pocket or hung up at the time of the cbange oi wind. Another cause of broken main springs is, the sultry weather of dog days, in August, when nearly one half of our work is to repair watches with the spring broken.
I do not know what connection there is between a change of wind and a main spring, but my own observation and that of other watchmakers of large experience confirm the above remarks. The breaking of the main spring is the lesser evil, the breaking of the center pinion, which so frequently follows that of the spriag, is the greater; ir by some means that could be prevented it would be of more benefit.
A friend has sungested another source of the breaking of springs-thunder storms, when it is not nnusual to have a number break, hauging on the board.

Francis Srowell

A Problem of Raising Weights.

Messrs. Editors:-Can you tell me what will be the coistant strain on a rope raising a weight of 3,000 pounds, ten feet per second, perpendicularly? Also, what is the percentage of loss of power in the crank, in changing the reciprocating motion of a piston to the rotary motion of a shaft?
What authority can you name to me which treats or these subjects plainly and simply?
C. H. R.

New York, July 16, 1865.
[The strain on the rope is increased beyond that of the weight only while the velocity of the weight is increasing; after a velocity of 10 teet per second has been imparted to the weight then to maintain this requires only the strain of 3,000 pounds. The increased strain, while the velocity is being given, depends on the rapidity with which the velocity is imparted. To impart a velocity of 32 feet in the course or one second requires an additional strain just equal to that required to sustain the weight. You will find this problem fully discussed in "Bart lett's Mechanics."
The loss of power in changing: reciprocating li. 0 rotary uotion by the crank results only from the increased friction; the amount or the friction depeuds of course upon the material of which the bearings are made, the perfection of the workmanship and the quality of the lubricator. The best treatise on friction is to be found in "Morin's Mechanics."-Eds.

Noise an Indication of Rain.

Messrs. Editors:-Will you explain through your paper why sound travels better just betore a storm? People living ten or fifteen miles from a railroad on distinctly hearing the cars, exclaim, "It's going to rain."
I. Х. E.

Grand Rapids, Mich., July 15, 1865,
[The distance at which sounds can be heard depends much on the state of the atmosphere; but it you live north or west from a railroad, you would hear the cars more distinctly when the wind was from the south or east, aud that wind would be likely to bring rain.-Eds.

The Crank and Eccentric.

Messrs. Editors:-I have repeatedly seen statements in your p. per to the effect that the crank and eccentric were always at right angles to each, or near it. This is not so; in some cases the crank is with the eccentric, as in a beam engine for instance. I think this statement should be corrected in your next issue.
G. W. R.

Mystic Bridge, Conn.
[We do not remember to have stated that the eccentric was always at right angles with the craok, because we know better; if we did it was an error. We have said, however, that in most cases the eccen-
tric was at right angles with the crank, as it is. Individuals can set their doubts at rest on this point by looking at any locomotive, horizontal or vertical en kine. The illustration of the beam engine is not a happy one, tor with a long toe cut-off the lead, or what amounts to it, the travel of the toe before it touches the lifter is so great that the throw of the eccentric is nearly witl the crank; but for this lead the steam eccentric would be where the exhaust eccentric on the other shaft opposite it is nearly at right angles with the crank.
We also said in the article on "How to set a Slide Valve," that levers made no difference in the relative pozit:ons of the crank and eccentric. This assertion has been criticised by correspondents, but, unless ou eyes leceive us, it is quite correct, for we have taken pains since writing that article to examine workiug drawings of oscillating engines with poppet valves, side lever engiues, ste \quad ple engines, locomotives and table engines, and we find that, with but one ex ception, where the valve is worked by a rack and pinion, the diagrams published are correct as regards the relative position of the crank and eccentric. Eds.

recent american patents.

The tollowing are some of the most important improvements tor which Letters Patent were issued from the United States Patent Office last week; the claims may be found in the official list:-
Mackine for Refitiing Stop Valves.-The valves of that class commonly known under the term of " gloje valves," are usually made with conical valves secured to a serew spindle and fitting into a conical seat. If a valve of this class becomes leaky, the only way to rafit the same, heretofore, has been by re grinciing, or, if that operation was insufficient or too slow, by unserewing the stop valve from its connecting pipes and sending it to the shop, where it would be refitted in the turning lathe or with the prope tovis. Either of these operations causes much loss of time and money. A simple and effective device by winch the operation of refitting said stop valve could be carried out in a short time, and without dis connecting the valves from the pipes, has been a desideratum which will be hailed with delight by every body who is trouuled with leaky valves. The devic which forms the subject matter of the present in vention, and which is intended to fill the want above pointed out, consists of two parts-one for refitting the valves and the other for refiting the seats. The turmer consists of a conical concave mill made in the precise form which the valve is to have, and provided with a yielding internal center, in combination with suitable bearings, two for said concave mill and one ur toore tor an adjustable center, in such a man ner that by removing the valve from the seat and placi:g it between the adjustable and the yielding center it is at once in the proper position to be acted upon thy the concave mill, and a few revolutions of said concave mill, imparted to it by an ordinary ratche Irrace, or any other suitable means, produce the desired effect on the valve and bring it in the requisite shape to fit into its seat. The part for refitting the seats consists of a conical mill or reamer with a cyl indricalstem, to be used in combination with a guide, which is mate to take the place of the stutivg box and nut through wbich the valve spincle passes, in such a manner that by removing said box with the vaive and valve spindle, and iuserting therefor the conical mill and its guide, a few revolutions given to said will will bring the seat in the proper shape, the whole uperation being pertormed witiout removing the stup valve from its connecting pipes. The in ventor of the above device is Samuel Wing, of Monson, Mass. Geo. R. Toplitt, of 60 Pine street, New York (joint assignee), may be addressed tor furthe intormation.
Adding Machine.-This inverition consists in the empluyment of a revolving disk, marked on its rim witi ti series of figures, commenciizs at 1 and ending at 100, or any other figure, and provided with cavifies to receive a pin, by means ot which said disk can be rotated, and with a helical or cam groove in its face, to operate in combination with a stationary abutment, and with a hinged iadex and stationary dial, marked with figures trom 1 to 100 near its circumference, and with other figures, trom 1 to 16 , more or less, on the sides of a segmental slot in
which the index plays, in such a manner that by in serting a pin in one of the cavities opposita to any desirable figure on the circumference of the dial the revolving disk can be turned on its axis for a distance equivalent to the figure which was opposite the re spective cavity, and, at the same time, the index moves in the cam groove, and the figure in question is registered; and, by repeating the operation with the same or other figures, such figures are added up and the sum regis ered on the dial and disk. T. T. Strode, of Mortonville, Pa., is the inventor.
Safety Valve for Steam Boilers.-This invention consists in operating two or more valves on the same lever, said valves being held closed by the action of a weight or spring, in such a manner that when the pressure of the steam rises beyond the desired point the several vaives open simultaneously, and the combined areas of the openings thereby obtained for the escape of the steam is greater than that of a safety valve of the ordinary construction; the invention consists, also, in an adjustable tulcrum, applied in combination with the lever, from which two or more valves are operated, and with a weight or spring hold ing said valves closed against the action of the steam in such a manner that the time when the steam blows off" is regulated by shitting the fulcrum instead of by a change in the power exerted by the spring or weigh to hold the valves in their seats. S. G. Bariker, of Dunmore, Pa., is the inventor.
Calendar Clock.- This invention consists in a re ciprocating or oscillatingslide, marked with the names oi the months, commencing with March and ending with Febrnary, and provided with openings opposite to said names, and with a projection which bears on a wheel, the tace of which is marked with figures, from 1 to $3 I$, to indicate the days of the months, and which is provided with eleven concentric grooves and oblique channels leading from the periphery of the wheel to the first groove, trom the first groove to the second, and so forth, in such a manner that whenever the projection of the movatule slide comes opposite to one of these r hannels said slide drops or moves and a new ame of a month is brought in view, and opposite to the figures on the rim of the month wheel. The time when the slide changes from one groove to the other is determined by the position of the communicatiug chanmels, which corresponds to the number d days of the different months. T. T. Strode, of Mortonville, Pa., is the inventor.
Machine for Rounding and Polishing Balls, Etc. -This invention consists of a machine composed of tour, more or less, longitudinally sliding rotary mandrels, radiating from a common conter, and provided with chucks at their inner ends, in combination with suitable mechanism to torce these chucks alternately up against the ball to be turned or ground, and with a milling tool or grinding wheel, in such a manner that two of the chucks will clamp the ball at a time and the ball is thereby turned in either direction, while the grinding wheel or milling tool is held in contact with the suriace of the ball by means ot one or more screvs or by an adjustable weight. The force with which the grinding wheel or tool is forsed against the surface of the ball can thus be regulated at pleasure. The position of the revolving chucks, and the time when the same grasp the ball, are governed by a double cam and by weights or springs, and said chucks are so shaped that they grasp the general surlace of the ball, and that cavities and projections overring on the surface of said ball will not be able to disturb the correct central position of the same John L. Knowlton, of Philadelphia, Pa., is the in ventor.

Padlock.-This invention relates to a padlock of that class in which the shackle engages or locks itselt when forced down into the lock. The invention consists in a novel means tor throwing the shackle out of the lock when liberated from a catch and bolt which holds or locks it, and for retaining or holding the catch and bolt, when the shackle is out from the lock, in proper position to receive the shackle when the latter is pressed or forced into the lock. The invention further consists in a novel arrangement of the means aforesaid with the catch, which operates in conrection with the bolt for locking or securing the shackle. H. Jackson, of New York City, is the in ventor
Lock.-This invention relates to a lock for piano fortes, sewing-machine cases, and articles generally
having hinged lids. The invention consists in the employment of two bolts of segment form, provided with shanks and connected with a tumbler in such a manner that the bolts will, as the tumbler is opera ted through the medium of a key, work in the patb ot a circle in and out from the lock case, in order to lock or unlock the article to which the lock is applied. E. L. Gaylord, of Terryville, Conn., is the inventor.
Drills for Oil and Other Wells.-This invention consists in making a drill, for boring wells, of fast and movable cutters combined together ia one stock, in such a way that the movanle cutter will be the eading cutter, and, after it has made its stroke, will receive a blow on its end from the descent of the fast cutters, thercby driving it past them into the rock Elias Baker, of Pittsburgh, Pa., is the inventor.
Method of Cutting-out Buttons from Ivory, Bone Etc.-This invention consists in a novel method of cutting buctons from ivory, bone, vegetable ivory wood and other substances. In the art to which this invention belongs, as now conducted, buttons are cut out of plates or disks of the material used, by placing the disks in a lathe and bringing up against them, on each side, cutiers of the proper shape, which cut out and separate the buttons from the said material. That portion of the material which is left after the separation of the button was accounted as waste. This is especially true of the manufacture of vegetable ivory into buttons. This substance comes in pieces of small diameter, not great enough to fur nish the ordinary-sized buttons for coats and other articles of apparel, and yet so much larger than one button as to leave a great part of the material un used. The object is to utilize this waste portion of the material, which is accomplished by cutting out therefrom one or more rings at the same operation which produces the button. Char.es H. Bassett, of Birmingham, Conn., is the inventor. Assigned to The Birmingham Button Company, of same place. New York office, No. 102 Duane street.

A Firearms Commission

Mr. Erskine S. Allin, master armorer at the armory in Springfield, has been commissioned by the War Department to visit the various arsenals in England, France and Switzerland, and to be present at trials of breech-loading fire-arms soon to take place in England and Switzerland. Here he will visit Ghent, Antwerp, Brassels and Liege, the town where the amous Belgian rifles are made, next Paris and other cities in France, and finally Switzerland. The rifle trial in the latter country will begin September 2d, probably at Gzneva, and will be open to competitors rom all over the world, a prize of $\$ 5,000$ being offered for the best breech-loader, besides the sum which the Swiss government will pay for the patent right of the gun. Mr. Allin will return to London so as to be present at a government trial of breech-loading rifles in that city, September 30th. On his retu:n, about three months hence, he will make a report to the Department of the result of his obsel vations Our Government could not well have selected a more suitable agent than Mr. Allin for this purpose, as he is admirably qualified tor it by his long connection with the armory in its practical workings, and his well-known mechanical ability. Đ. De Gothal, teach er of languages, and tor some time a clerk at the armory, will accompany Mr. Allin as interpreter.Springfield (Mass.) Republican.

An Oil Well Destroyed.

Well No. 19, United States Farm, on Pit Hole Creek, was destroyed by fire about seven o'clock P. M. on the 3 d inst. The well was finished that day, and was flowing about two hundred barrels, and no tanks being up the oil was allowed to flow on the ground. Some twenty persons were standing in and around the derrick, some of whom it is feared wer unable to escape, for the ground for forty feet around was one sheet of flame in a nument, Three men are known to be seriously burned, and only saved thei lives by jumping into the creek. The well is still flowing and burning.

The Pittsfield (Mass.) Eayle says the work on the east end of the Hoosac tunnel is progressing at the rate of sixteen feet a day into the solid rock of the mountain.

