 tic tube or ring placed within the coupling, and arranged in relation to the other parts that the pressure of the water within the hose will keep the coupling water-tight. There is also a peculiar means
necting the heads of the coupling together.]
MoDe of APpLYNG THE Power of The STRAM EN-
GMEDJacoh Widmer (aesignor to himself andA dirowrd
Gilbert), of New Haven, Conn. :I claim, first, The

 circuit breaker operating to cause tiel vibration of the
armature,
Second.
so combinibing a hammer and bell with the

spring or kie in a door or window to operate oo as not
only tobrin them automatically into action when he
door or window is open, but maintain a continuous or
continued ringing of the bell by the interuption of the
clectric current without intervention of other ma.
chines.

STove Doors-R. H. N. Bates, of Providence, R. I.,
agsignor to himself and Isac Backers, of Canterbury, assignor to himself and IIsaac Bact
Conn., and J. P. Barstow.

A New Gnomon

A correspondent informs us that a friend of his has invented a new gnomon for sun-dials, which is simply a piece of thread or twine carried at an angle from the center of the dial to a post set at one side. This gives the time at noon with accuracy, which no other gromon will do.

Dialing.
Messars. Editors-From the notice of sunMessrs. Editors-From the notice of sun
dials in a late issue of the Scientific American, I am led to make the following remarks :-
There is no more beautiful or ingenious in strument than the sundial; when correctly made and its use properly understood, it can present the true time with an unvarying ex actitude to be found only in the works of the Divine Artificer, upon which its power depends. The only difficulty lies in the variable nature of the shadow's progress through the varying nature of the sun's course, which will give a different reading to the hour circle from the mean, or average or clock time While the dial indicates solar time, varying with the season, the clock presents equable or mean time, being the precise or exact division of the hours and minutes to their equable length, yet there is no real clfference between the two. They both come to the same conclusion, and both precisely accomplish in a given period their due degree. Hence with the smallest possible trouble it is easy to find the very thing sought, and at any time to discover the true clock time. The following table will answer for such indication to any person using a dial:
The sun's center is on meridian, and the dial shows noon on
$H . m . s$.
124

4 | Jan. 1, when theclocktimeshows | 12 | 4 | 3 | |
| :--- | :--- | :--- | :--- | :--- |
| Feb. 1, | $"$ | $"$ | 12 | 13 | Mar. 1, " " I2 1232

April 9,
$1212 \quad 0$
$\begin{array}{rrr}12 & 0 & 0 \\ 11 & 56 & 55\end{array}$
115731
$12 \quad 0 \quad 20$

12	3

12600
$\begin{array}{ll}11 & 5946 \\ 11 & 49 \\ 35\end{array}$
$\begin{array}{lll}11 & 59 & 46 \\ 11 & 49 & 35 \\ 11 & 43\end{array}$
$\begin{array}{lll}11 & 49 & 35 \\ 11 & 43 & 43 \\ 1 & 49\end{array}$
$\begin{array}{llll}\text { Nov. 1, } & \text { " " } & 1149 & 43 \\ \text { Dec. 1, } \\ \text { By this it will be easy to see how much }\end{array}$ difference should be allowed for the equatio of time, and at any period to find the clock time by the dial indication.
It must be remembered, however, that a dial to be exact must be most carefully placed. Simply setting a dial north and south is not at all sufficient. Pains must be taken to secure a true meridian, and before the dial is located, that meridian should be found with great exactness, so that in setting the dial (if horizontal) the gnomon shall be perfectly adapted to the true meridian of the place where it is to stand.
It would seem that an agreeable and really useful accompaniment to the dial would be a prolorgation of the horary circle, sufficient to allow the scale of signs to be inscribed, and the style to track out the sun's path through the heavens, and thus unerringly indicate hi place in the ecliptic. If in either side of the astronomic signs the names of the months were written, it would be a most pleasing occupation to notice month by month the progress of the sun in his vibrations backward and forward, and to children it would show clearly the motion of that planet. R.W.
[The above communication on the construction of sundials is not only interesting but valuable, and the facts contained have the freshness of positive experiment, and are consequently of interest to our readers.-Eds.

Inter-oceanic Canal to the Pacific.

Messrs. Edizors.-In the last number of your paper I notice an article on the "Inter-" oceanic Canal to the Pacific," which, so far as the report of Lieut. Crave is concerned, is perfectly accurate, but is, I think, calculated to mislead those who are not acquainted with the previous history of the project; and as the subject is one of great and universal interest, it is important that no undue prejudice be raised against it.
The proposed route was originally explored by W Kennish, Esq., C.E., whose plans and estimates were published on his return, and submitted to the consideration of eminent engineers, both of this country and in Europe gineers, both of this country and in Europe.
Their opinion as to the practicability of con-
structing a canal, without locks, sufficiently capacious for the passage of the largest ves sels from ocean to ocean, was unanimously favorable, provided the data furnished by Mr Kennish should be found correct. The expedition under Lieut. C. was therefore sent, not to survey any new route, nor to make further explorations, but merely to verify the statements of Mr. Kennish. He has not contradicted a single one of these statemeñts so far and his hasty condemnation of the project is, therefore, wholly without reason, for all the difficulties he urges against it were met and estimated for, in the report of the original survey. In this state of the case it is impos sible to pronounce judgment until the report of Lieut. Michler, Topographical Engineer of the late expedition, shall have appeared, when the question will be settled by the scientific world.
These facts should be made known, in justice to the promoters of an enterprise of which if successfully completed, the whole world may well be proud. Yours,

James A. Rocewell.

New York, June, 1858

A Pleasant Testimonial.
Messrs. Editors-I took out two patents through the Scientific American Agency, bearing date April 21st and July, 21st of last year, and I now wish to return you my sincere thanks and good-will for the reliable and beneficial information I received from you and your Examiners. You gave me no trouble in securing my rights; and I now discover that you have made my claims to cover both inventions much broader than I expected, which has made my claims of much more value to me. I shall soon have another case, and shall surely call at your Patent Agency to have it prepared.

John Woodville.
Chilicothe, Ohio, June, 1858.
[We are gratified to receive this pleasant testimonial from our client, and to learn from him that, in consequence of the care taken in the drawing up of his claims, his patents are, on this account, much more valuable to him. It is notorious that inventors who undertake the preparation of their own cases are gener ally not only bothered very much by the Patent Office before their claims can even be examined, in consequence of defective papers, but when they do succeed, it is rarely, if ever, that their claims can stand a litigation.Eds.
Successful Copper Mining in Anstralia.
On the 29th of September, 1845, the work at the famous Burra Burra mines was commenced by twelve miners; they now give employment to 1,031 miners, and support a population of ner.rly 5,000 persons. Since the commencement of the working, the mines have produced 128,400 tuns of copper ore, yielding 25,700 tuns of copper, which, at the present moment, would be worth in Adelaide $\$ 13,415,000$. The wages distributed in these mines amount to $\$ 4,125,000$, while the dividend paid on each $\$ 25$ share amounts to $\$ 1,000$. The present value of its shares is $\$ 1,600.600$. Such an instance of successful mining operations has rarely, if ever, been witnessed in any country.-American Mining Chronicle.

Cotton Mills in Saxony.

The kingdom of Saxony possesses, as the mother of the German cotton mills, the largest number of any of the German States, viz., 139 mills, working 554,646 spindles, with a yearly consumption of 34,200 bales of North American cotton, and 34,000 bales of other kinds. A large mill has just been built which will run 50,000 spindles, and consume yearly about 3,500 bales of North American cotton, and 2,000 bales of other kinds. The total number of mills now in working order is 134 , running 604,646 spindles, and consuming annually 36,700 bales of North American, and 36,000 bales of other kinds. The largest mill has 50,000 spindles in working order and the smallest 120 spindles in

Uses of the Potato

This valuable and nutritious esculent is not only useful to us in the many texnpting form in which it is presented in its anmistakable character, but the farina extracted from it i largely used for other culinary purposes. The famed gravies, sauces, and soups of France are largely indebted for their excellence to that source, and its bread and pastry equally so ; while a great deal of the so-called Cognac imported into America from France is the roduct of the potato, and imbibed as the pure essence of the grape. The fair ladies of our country perfume themselves with the pirit of potato, under the designation of ear de cologne. But there are other uses which this favorite esculent is turned to abroad After extracting the farina, the pulp is manuactured into ornamental articles, such as picture frames, snuff-boxes, and several descrip tions of toys, and the water that runs from it is a most excellent scourer. For perfectly cleaning woolens and such like articles, and curing chilblains, it is also suocessfully employed.

Recent Patented Improvements.
The following inventions have been patented this week, as will be found by referring to our List of Claims :-
Feeder for Steam Bollers.-George Brodie, of Little Rock, Ark., has invented new feeder for boilers, the object of which is to gradually supply steam boilers with water equal at all times to the amonnt evaporated, and used so that the water within boilers will be constantly kept at a given ight, and by the most simple means, requir ing the least possible expenditure of power for its operation.
Machine for Finishing Soldered Tub-ing.-Edmund Jordan, of Waterbury, Conn. has invented an improved machine for finishing soldered tubing, in which a peculiar means is employed for operating a file or cutter for the purpose of filing or finishing off the soldered seams of the tubes, and there is also a clamp for holding tubes while being operated upon by the cutters. The inventor has assigned hisinvention to the Benedict and Burn ham Manufacturing Company of the same place.
Improved Process of Tanning.-Jesse Morgan, of Sumterville, S. C., has invented an improved method of tanning leather, which consists in treating hides or skins when they have been partly tanned by the usual process, with a compound of sugar or other saccharine matter, glaubers salts and chloride of soda, for the purpose of completing the tanning rocess more expeditiously than when it is completed in the usual way, and at the same time making leather equal in quality, weight and durability to that tanned entirely by the old process.
Helypsometer-This is an instrument for taking the altitude of the sun at sea or on land, to which the inventor, J. Oakes, of New York, has given the above name. The end ttained by this instrument is, that with it the altitude of the sun can be taken when the natural horizon is obscured by fog or is invlsible from other causes. It consists of two parts, one of which is employed to record the altitude by the action of the sun's rays upon a sensitive coating of similar nature to those employed in photographic processes, and the other to measure the altitude thus recorded. The first mentioned portion of the instrument consists of a hollow hemisphere whose equatorial plane is kept in a horizontal position or as nearly so as possible, and has a.small orifice in the center, and whose concave is prepared with the sensitive coating. The rays of the sun being admitted through the orifice produce a mark upon the sensitively prepared concave surface, and by applying the measuring portion of the instrument to measure the distance in degrees of a circle from the equatorial plane of the hemisphere, the altitude is obtained, being represented by the said distance in degrees.

