Evaporative Qualities of Iron,

In a recent article on page 204, this volume Scientific American, we presented some very useful information on this subject from the London Mechanics' Magazine. It was stated from a series of experiments conducted by George Tosh, that brassboiler tu bes were found to possess an evaporating power exceeding thuse of iron twenty-five per cent, and that copper tubes exceeded those of brass thirty-one per cent. We observed that the accuracy of the experiments was doubtful, and our doubts we perceive are confirmed by the last issue of the London Artisan, received by us since the article referred to was published. It contains a very good report of the discussion which was elicited by the reading of Mr. Tosh's paper before the Institution of Mechanical Engineers. At that meeting, W. B. Johnson stated that the results obtained by the author of the paper (Mr. Tosh) were very different from his experience, as he had been led to the conclusion that there was no appreciable difference between iron and brass in evaporative power. He had a good opportunity of comparing them on a large scale in "two boilers of 160 horse power each, which had been made exactly alike, excepting that one had iron and the other copper tubes. The result of the working of these boilers was about equal, and no difference could be noticed be ween them.'
Professor Rankine stated that a series of experiments had been tried a number of years ago, by James R. Napier, with experimental boilers of copper and iron of various thicknesses heated over the same gas flame, and be found but a small difference in their evaporative power, about one-thirtieth being in favor of copper. "In all experiments of the kind," he said, "the state of the heating surface was important, that is, whether smooth or rough, clean or encrusted. The effective evaporating result or transmission of heat through metal depends on three properties-first, the resistance of the first surface (that next the fire) to absorption of the heat ; second, the resistance of the internal particles of the metal to the conduction of heat ; and thirdly, the resistance of the second surface (that next the water) in giving of the heat. The resistance to internal conduction is less in copper than iron, but its surface resistance is greater. It had been found in experiments very carefully conducted that when the surface became dull, the transmission of heat through all metals was about equal.'
Mr. Siemens stated that Dr. Ure had proved by a series of experiments that the conducting power of copper was so good, that by increasing its thickness in a boiler, its evaporative power was not sensibly retarded, while with iron, the result was different-by increasing its thickness, evaporation was greatly re-
tarded. On the other hand, Mr. Roberts stated he had found that the thickness of the metal in a boiler-whether of copper or irongreatly affected the evaporation of the water. The plates, when thick, retarded the passage of heat, and tended to injure the metal by not permitting the caloric to be carried off so rapidly as it should be by the water. He found that brass tubes of No. 18 wire gage, lasted much longer than thicker ones of No. 14 wire gage, under the same conditions precisely. Mr. Craig stated he had not found much difference in practice between brass and iron tubes in locomotives, and did not know of any defnite result in favor of one more than the other as to evaporative powers.
Mr. Henry Maudsley stated that in steam engine boilers-particularly marine and sta-tionary-there were other reasons affecting the use of copper or iron beside evaporative quali-
ties or conducting power for heat. Their durability, under exposure to rusting or corrosion, and liability to encrustations being formed in them, were questions of greatimportance. He had known a case of nine marine copper boilers ordered for Naples in preference to iron, because allowance had to be made for their being sometimes laid up
without working, and not to suffer from rust,
as iron boilers were sometimes under the
same conditions seriously injured in eighteen same conditions seriously injured in eighteen
months, while copper boilers were not affected. The original cost and conducting power of boilers, under the same circumstances, were secondary questions to durability.
Mr. Tosh then stated that where he has had charge of locomotives and other engines for several years at Maryport, he had used a great number of brass and iron boiler tubes with apparently equal success, but brass tubes had been generally preferred for locomotives working at a high pressure, because there is less difficulty in keeping them fast in the tube
plates, and encrustations are not so liable to form on them as on those of iron; and when iron tubes became leaky in the least degree, their ends were rapidly destroyed, which was not the case exactly with brass. Iron boiler tubes are now extensively employed in England, and many engineers are of opinion that no other kind should be used, but brass is still preferred by the majority.
The foregoing information on this subject -giving the substance of opinions expressed by engineers distinguished in their profession -is of much importance, and will interest out readers generally.

Laboratory-No. e.

Equivalents.-We can no more make progress in chemistry without studying its principles and its laws, than an artist can paint a perfect picture without knowing the rules of perspective ; it is for this reason that we have recently turned from the subject of experiments to that of doctrines, especially as we hope that some of our readers will at a future
day give us credit for being the finger-post on day give us credit for being the finger-post on their road of life which pointed to the path leading to honor. The term "equivalent" in chemistry has much the same meaning as it has in ordinary things. An equivalent means of the same value; thus, twenty shillings in silver (English currency) are equivalent to one
sovereign in gold. In the laboratory, the sovereign in gold. In the laboratory, the word equivalent implies an atom of matter that is equal to another of a different kind every atom of an element has a specific weight compared with another atom, this weight has, by the consent of philosophers, been denominated its "equivalent." Hence, 28 parts of iron, combining with sulphur, always unite with 16 parts of that fiery element; let the weight of the materials be in grains, ounces, or pounds, the same proportion is always there -in sulphuret of iron. You will say, for the sake of argument, "But suppose we only put 14 parts of iron to 10 parts of sulphur, they will unite." Chemical doctrine says "No," for there will be free sulphur containing no ron; in the mixture, the 14 parts of iron will have combined with 8 of sulphur, which is in the same proportion stated, for as
$28: 16:: 14: 8$. It is thus we call 28 the "equivalent" of iron, and 16 the "equivalent" of sulphur, because we have made hydrogen as the standard of comparison, and have fixed upon 1 as its equivalent, and the base or unit of calculation in measuring
the equivalents of all other bodies. A list of the equivalents of all other bodies. A list of
equivalents or atoms in weight is given in every elementary work on chemistry; it is, therefore, sufficient for us to point out the road where the philosopher's stone may be found.

Alloy for Medals, Small Figures, sec. Herr von Bibra states that an alloy consisting of 6 parts bismuth, 3 tin, and 13 lead, is very fusible, and remarkably hard, without being brittle. The fracture does not present any crystalline appearance. When objects cast with this alloy are moistened with dilute nitric acid, and rubbed with a woolen rag, the raised portions appear bright, and the depres-
sions dull. Some castings of medals from sions dull. Some castings of medals from that writing, which could be read on the originals only by aid of the microscope, was quite distinct in the copies. It is probable that this alloy would be serviceable for typo-

Foreign Summary.
C. D. Seropyan, of New Haven
C. D. Seropyan, of New Haven, Conn., has secured a patent in England for a mode of
preparing bank notes, bills of exchange and ther papers, to prevent counterfeiting by photography and its kindred processes, by using two or more colors, which do not reflect nor ransmit, but absorb the chemical rays of light, one of which shall be so applied to the paper as to cover the surface with a tint of a red or a yellow shade of color, while an ink of a different color from the surface tint shall be used for printing the other parts of the note, that is, the obligatory and ornamental parts of the said surface. Where this mode of preparing notes is observed, countereiting by photographic or kindred means cannot be effected; for so long as the tint or ground and the vignettes and lettering remain together, a distinct impression of the latter cannot be obtained sufficiently clear and distinct to answer the purpose of the counterfeiter, because both the colors neither trans mit nor reflect, but absorb, the chemical rays ${ }^{\text {fat. }}$
Powers, the Sculptor.-We observe that our distinguished countryman, Powers, has secured another patent in England for a machine for punching, stamping, or cutting metals or other substances, in which the tool can be changed very quickly, and the whole machine can be taken to pieces and re-adjusted with great expedition. Like the singularly and novel formed rasps he invented a few years since, it appears to be simple in construction and admirably adapted to the purposes for which it is designed.
Another American Telegraph.-There is a project on foot at St. Petersburg for establishing a strictly overland telegraphic company with North America. The plan has been presented to the government by a Belgian engineer, and consists in carrying a telegraphic line by Siberia, and to establish a sabmarine communication between Capes East and Prince of Wales, then to join the ines to those of the United States through the territories of Russia, and England.
The Leviathan.-Some idea of the immense magnitude of this monster steamer may be formed from the fact that the mere cost of completing her for sea, putting on board stores, \&c., and fitting her for the trip she is expected to make to Portland, Maine, he coming summer, will amount to the enormous amount of $\$ 600,000$. No less than ten anchors are required to hold her at her present moorings, each with lengths of cable from 40 to 160 fathoms. All her masts are to be stayed by iron rope standing rigging of the most massive kind, the shrouds and stays of which are so secured at their ends through iron rings as to enable a single skilful man to cast loose all the fastenings of each mast in five minutes, in the event of disaster, though until the rings are opened, the sides might yield rom the ship before the shrouds would yield. The Atlantic Telegraph.-Four hundred miles of new cable are in course of manufacture to supply the loss from the failure of the experiment last year, and 300 additional miles which it has been resolved should be provided, so as to allow greater length of slack than was originally contemplated. The cost for these additional 300 miles is estimated at $\$ 180,000$. It is generally believed that the plan of joining the cables in mid ocean, instead of starting from either shore, will be resorted to. Considerable modifications are being made in the machinery, and experiments are now in progress with a view of making the machinery for paying out as nearly as possible self-acting.
New Lubricating Material.-M. Rohrig has discovered a means of removing the acid principles of fat, and thus enabling it to be applied as a lubricator for machinery, without danger of oxydizing the metals with which it comes in contact, besides freeing it from all disagreeable smell and taste, and rendering it to a consistence of castor oil. It hardly colors copper, bronze or brass, does not run like olive oil and other thin oils, and is much cheaper than the ordinary lubricating material.

J. C. R., of Va. $-\Lambda$ patent cannot be obtained for any mprovement but in the name of the inventor. The ypurat is not new, andit therefore not patentable. Veegetable oils are generally injurious to leather, and so are some animaloils. Flax, olive, and whale oils soon rot leather. Tallow and neats-foot oil make a good leather composition. Tooth powders should be avooded, it possible; they are not required if teeth are, as they E. B. S. of of lowa.-
hich you refer, illustrated on page of, Vol. XII, Sol. Ax.
C. O. R., of N. J.-The fine gloss onshirtbosoms can be produced by a mix ture of gum arabic with the etarch;
but we believe that our city laundresses do it by the suickness with which they iron.
M. F. C., of Iow. - The friction of your water-tight joints through which D passes, would alone prevent
your ever obtaining perpetual motion. Turn your attention to osomething useful, and do not try to catch shadows.
M. A. W., of ml_-You can precipitate iron from its solutions as sesquioxyd, by adding a solution of carbonate of soda. It cannot be precipitated in a metallic
state. vinge W., of S. C.-We col take the views from. Engravings taken from the drawings whichareattachedto the Letters Patent can seldom be made to illustrate an invention in so practicala manner as when the views are taken from the ma-
chine ora working model: therefore it chine or a working model: thcrefore it it as impor taut
to you to furnish good material, to get up your engravio you to furnish good
ings from, as it is to us
E. C. M.. of N. Y.-Your communications cannot be published. We can fill our columns with matter of
more interest to our readers than what you lave written.
P. A. P., of Fla.-A revolving battery intended for
the use of war vesels, is not next If youne the use of war veseels, is not nev. If you have any-
thing neiv $i n$ this department it can be patented. Send us a sketch and description of it for examination. A. H., of Wis.-The employment of a long tube
through which to run out the submarine telegraph cable, as been already suggested to us.
J. J., of Ohio. The "Railway Association" forthe encouragement of inventions, to which yourefer, is non
est inventus. The squaring of the circle means the est invenhuss . The squariag of he circle means the
multiplying of any part of a circle intosuch a number as will give the exact circumferenco-without a remainder.
R. F. B., of Mo- - Your plan of propelling boats by two direct-acting blades working in tight boxes through the stern of a vessel, is not new, except in bcing placed
on an incline, and being lifted out of the water at each on an incline, and being lifted out of the water at each
stroke. This is not an advantageous method of operating; they should be placed horizontally.
S. R. Reed., of Buffilo, N. Y.,. wishes to correspond with the manufacturer of the ditching machine exhibited at the Elmira (N. Y.) Horse Fair last fall. In-
ventors and patentees who hide their light under ventors and patentees who hide their light under a
bushel must expect to be neglected or if fund bushel must expect to be neglected, or if found at allit
must be by some such method of pursuit as is a dopted in this case. Such requests as Mr. Reed makes are becoming very numerous.
H. H. F. of Miss.
H. H. F., of Miss.-We ent patent covers the modification of your machine, as Bepresented in the diagram you have sent ts.
B. B. of Ohic-Gloves made of stout cotton canvas.
boiled in a strong solution of alum, and then dried thoroughly, should last much lonser than eitherleather or india rubber, for handling potash. Several methods for stering vessels have been patented; sce Captain Brown's, illustrated on page 268. Vol. 6 , Scr. Ax.
L. s of Ind -Y L. S., of Ind.-Y Your idea of conveying gas in suitable vessels from place to place, for the purpose of illumi-
nating small villages, is very old. Many years ago a nating smanl viilages, is very old. Many years ago a
company was formed in London to manufacture illuminating gas, and deliver it to the consumers in bags at their own houses. It was a failure.
J. W. H., of Ind.-Your theory "that there are two
funnel-shaped holes running into the earthfrem funnel-shaped holes runniig into the earth from the poles, throughwhich lish tand he at enter into it.todis-
seminate their life-giving properties, and which for seminate their life-ziving propertiee, and which for
forty years you have been maturing," is highly impro-
 both poles, and have not seen anything of the holes; again, the penetrative povers of light and heat have been measured, and we know exactly how they pene-
trate the carth. The facts are against you, and true trate the carth. The facts are against you, and true
theories can only be formed onknown facts, The idea theories can only be formed on known facts. The idea
is an old one, having been first promul gated by a Prus. sian philosopher in the time of Frederick the Great. L. F. of Pa.-The expansion of hot air is uniform. The pressure increases one pound for evcry 33 degrees
of heat. The pressure is 15 pounds on the square nch, when raised to 490 degrees of temperature.
R. . . N., of Pa.-Y Your barn being 40XXO feet, should be protected with a lightning rod at each end, which
should extend at least ten feet above the summit of the should extend at least ten feet above the summitor he
roof, and down several feet into the damp ground, or into a well of water. Unite the sections perfectly to. gether, and fasten the rod to the barn with glass cleets, or brackets of dry wood covered with shellac varnish. The higher and thicker the rod, the more perfect will it be as a lightning conductor.
W. J. S., of --Messrs. Crum \& Paul have a patent foran improved process for making bread, but we are nota aware of any patented machinery of theirs for
this purpose. If you had infornedi us in what state
you reside several days since. Ther
every State in the Union

Scientific Anmerican.

J. R. S., of Va .-We advise you not to expend time
and labor in experim and labor in experimenting with hot air engines. No
power can be obtained from contracting the air-it is a mechanical impossibility. The best way to use hot air
is upon the principle of the non.condensing high-pre sure steam engine.
R. D., of Mich.-Tin being dearer than copper, of
course an alloy of these two metals is more expensiv than brass made of zinc and copper. Muntz metal for copper. Bronze sheathing may be made with 95 per cent of copper, and 5 of zinc. We have never seen copper coated on one side with tin as thick as the copper sheet. The address of the W
No. 52 Beekman st., this city
E. E., of N. Y.-If the circumstances are as you state them, M. A. cannot secure a patent on his alleged im
provement ; but if his invention is new, no infuence can possibly avail to prevent the issue of a patent to can possibly avail to prevent the issue of a patent to
him. Every case presented to the Patent Office is judged onits merits, and to attempt to stop a case by "protest," under the circumstances, would be of no avail. You can have an interference declared by making an application for the same device, and if you can
sustain your right to it by proof of priority of invention, you can secure the patent-not otherwise.
T. M. P., of N. Y.-To stamp an unpat
"patent rught secured," would be a clear violation of D. A. B. punishable by fine.

Drough i., of Ala.-If your plan for forcing letter through tubes, by means of atmospheric pressure wa new, we should have no confidence that it would ever
succeed. Similar plans have been tried without success.
J. B. C., of Ind.-If you own the right in a patented iuvention for a certain territory, you can make and sell to any and all purchasers upon your own ground. If parties purclasing are willing to run their own risk in attempting to use them upon the territory belonging to
another, the responsibility talls upon them, and not up-
F. J. M., of Mass.-When salt water is employed for steam boilers the salt sinks to the bottom-becomes concentrated-it does not rise to the surface; and is removed elther by a brine pump or blowing-off. At the it must contain the carbonates and sulphates of lime and will, therefore, readily form incrustations. It ought to be purified before bcing admitted to the boiler; if this is not done, you must blow-off regularly at both the lower and upper blow-off cocks. your attention in sending us the extriged to you for Russian steamer manjoor.
M. M. K., of Texas.-You say that owing to the $\operatorname{tin}:$ ants, no hedging has yet been tried in your Stat that answered the purpose, and that by a eareful study of the thorn shrubs of your region, you have found one
that will stand these unfavorable conditions, and inthat will stand these quire if you can get a patent for it. Surely not. The such discoveries. Your State ought to reward you if it H. J. H., of Ill.-The philosophy of color is simple. Colore are not substantives, but appearances caused by reflected light, and are no more material than the light itself. (caused by intercepted light ; but neither the color nor the shadow are substances.
u can Rexas.-Sinver or copper are the best metal Electro-Metallurgy"" published You should get "Smee this city. It will give you all the necessary instruc terie
S. W. B., of Vt.-There are arrangements of gearing on various machines for communicating a fast or slow motion to machinery. A cone pulley is the most con W. H., of -- -Your gunpowder engine is new to pe cannot tell yon what would be the cost of it as ing an endless belt of buckets is not a new watermo tor, but one that is as old as the genuine water wheel. D. A. M., of Pa.-The number of the Scr. Ass. you wanted has been sent. A millstone of $31 / \mathrm{feet}$ in diametcr will not produce backlash so readily as one of four what kind of gearing may be employed.
J. D., of N. Y.-Blocks of granite about twelve inches deep, and seven or eight inches wide, set cdgewise, are used for a hundred years in Europe. There is no necessity for using cement between the interstices, as these assist to give footing to the horses. It makes a very
excellent pavement, and your views in this respect are pertectly correct.
T. V. S. or Texas.-We are obliged to reject your intended for "ight and motion; "it is evidently not incorrect. C. C., Jr., of Mass.-The "first" is the only edition we have seen of Minifie's work on drawing. We do not
know the price of pure metal cobalt, but the oxyd is sold at the rate of $\$ 1$ per ounce.
W. H. L., of Wis.-We are quite certain that your
hopes for a patent are futile, and hopes for a patent are futile, and we must discourage you. When we say that we have had the same thing
in our office, we mean it. If you wish to try for a patent in our office, we mean it. If you wish to try for a patent for your. D ., of Wis.- Earthenware cases are among the
D. A. earliest devices used for burial purposes. We published a number of articles in Vol. 5, Scr. AM., proving the
popular notion "that bodies will not sink to the bottom of the ocean at great depths," to be a popular delusion.

Money received at the Scientific American Office on account of Patent Office business, forthe week ending Saturday, April 3, 1858 :-
W. H. C., of IIl., 227
W. H. C., of III., $\$ 27$; J. O., of N. Y., $\$ 305$; S. \& A.,
of Mich., $\$ 22$ J. C., of N. Y., $\$ 30$; J. \& J. C. H., of N. Y., $\$ 30$; C. M. L., of Ohio, $\$ 25$; G. W. S., of Ind., $\$ 30$;

Bros., of Ga., $\$ 30$; L. F., of N. J., $\$ 30$; W. W. I Conn., $\$ 30$; S. T., of 一, $\$ 20$; J. W. P., of Pa. W. \& D.. of Mass., $\$ 25$: W. D. J., of N. Y., $\$ 25$; of N. Y., $\$ 20$; F. \& J., of Ohio, $\$ 25$; S. H., Jr., o $\$ 10$; N. H. S., of $111 ., \$ 25$; N. A., of N. Y., $\$ 25$; S. of N. J., $\$ 25$; D. B. W., of N. Y., $\$ 30$; L. T., of N $\$ 20$; H. A. N., of Mass., $\$ 30$; W. B., of N.'J., $\$ 3$ C. D., of Ky., $\$ 30$; J. C., of N. Y., $\$ 30$; B. A. Conn., $\$ 30$; J. F. K., of Ind., $\$ 25$; G. S. R., of $\$ 25$; W. C., of N. Y., $\$ 25$; I. R. L., of Pa.. $\$ 55$; B., of N. Y., $\$ 35$; W. O. P., of N. Y., $\$ 25$; J, T., Y., $\$ 25$; T. O., of Miss., $\$ 25$. Specifications and drawings belonging to parties the following initials have been forwarded to the ent Office during the week ending Saturday, 3, 1858 :- J. C. S., of Mass. ; I. Z. A. W., of Pa.; W. C.,	

IMPORTANT TO INVENTORS.
A MERICAN AND FORENGN PATENT

 of tombinanainate

TWO LARE GEVENERE SAWB-BULIER IN
 Trumpie

THe NATIOMA SEED PLANTER PAT

LATHE CHUCLS-WE WOULD CALL THE

 Lock

 FiREARM OHALLENGE-MR- GLEERT

CORLISS, PATENT STEAME ENGINES

PICKPOCKEVS DEFEATED-YOUN WAL

5000 AGEVTS WANTED-TO SELL FOUNR

THE LTTTLE RRICK MMAER RAKEES

J. A. FA A. E CO.OMORCESTER, MASS.

 United States, by sending 12 cents in postage stamps or
moner, which amount will be deducted from the bill, if
an order is sent.
No. 635 Chestnut tit., Philader

$\mathbf{S}_{\text {TEAMM }}^{\text {TENGINES }}$

SECOND-HAD MACHNISTS, MOOLS

LAP-WELDED IRON RODER TVBEES

WOODWORTH MMPROVED-TWO GOLD ed improvementsupun the celebrated Wood worth Planof these machines now in operation, fully demonstrate
their great supernority over all others. Machines of all
sizes constantly for sale JAMES A. WOODBURY,
69 Sudbury kt., Boston, Mass.

RIGHTS FOR SALE of PATENT LIME-KILN Than which will
Quincy
Quit Min

