SCIENTIFIC AMERICAN,

rosushsred wzeriz
At No. 128 Fulton street, (Sun Buildings,) New York, BY MUNN \& CO
o. d. munn, s. h. wales, A. e. beach.

 Srooklyn and Jersey City.
TERMS-Two Dollars
TERMS-Two Dollars per annum.-One Dollar in
advance, and the remainder in six months.
er see Prospectus on last page. No Traveling Agents employed.

Coal Gas.
The New York Gas-light Company have in operation three retort houses, containing 504 retorts, and over 160 furnaces. There are also purifying and condensing houses, to gether with the usual number of workshops and offices. They have two large chimneys over 150 feet high, with six telescope gasometers, exclusive of six distributing gasometers, at different parts of their district, which hold over $1,500,000$ cubic feet of gas The total cost of these works amounts to over $\$ 500,000$ The company employs about 400 men , and manufactures $150,000,000$ cubic feet of gas per year, consuming about 40,000 tuns of coal, from which over 25,000 tuns of coke are produced. Before 1849 , the company manufactured their gas from oil and rosin, but now they use two-thirds of Cannel and one-third of Newcastle coal, and when the gasometers are not large enough to contain what is manufactured, the Cannel coal is exclusively used, as it is purer and makes more gas, although its market price is somewhat higher than Newcastle.
The process of manufacturing gas is as fol-lows:-A panful of coal is put into an iron retort, under which is a furnace that heats the retort red hot, turning the coal partly into gas and partly into coke. The latter remains in the retort, while the gas passes out through a pipe half filled with water, called the hydraulic main, the force in the retort being sufficient to drive it through the water and over the surface; but it cannot pass back, as the water acts as a seal to secure it. Thence it is conducted into a condensing pipe to the condensing house, where its heat and volume are reduced. It is then transmitted to the purifying house, where it passes through three distinct beds of dry lime, which extract the sulphurous particles from it. There are test cocks attached to the purifiers, by which its purity is tested. The cock is turned to let gas out, and a piece of paper saturated in a solution of sugar of lead held over it, and if it stains the paper, it is impure. It is said that sugar of lead will detect one impure part in 40,000 cubic feet. The gas, when purified, is conveyed to the gasometer, from which it is distributed into the pipes throughout the city. The company have over 125 miles of pipe laid, covering the whole of their district, which consists of all that part of the city south of Grand street.

The lecture hall of the Smithsonian Institu tion at Washington, D. C., is built in the form of a speaking trumpet; the lecturer stands, as it were, in the smaller end, and the slightest whisper can be heard all over the room. It was constructed under the direction of Professors Henry and Bache, and is a triumph of acoustical science applied to public buildings.

SLEPPY'S CHAIN-MAKING MACHINE.

Chain-making is an important manufacture, and on the strength and compactness of chains often depends a cargo of precious merchandize, the success of some great engineering undertaking, or, in fact, any of the thousand articles of worth that are daily being pulled, transported, or raised by this means. For all purposes where chains are employed, it is desirable to have them strong and cheap, therefore, wherever we can introduce machinery into their manufacture, we secure both. The ordinary process of forging a chain of any dimension is a tedious one. The bar of metal is heated to welding heat, and then the end bent in the form of a hook, which is cut off and welded into round or oval form; another piece of the bar is then taken and bent, cut and passed through the already formed link, and in its turn welded together and so on to whatever length is desired.
The machine which is shown in our engraving is one which cuts a perfect chain out of a bar of metal. In Fig. 1, A is the frame. B B are the axles which are connected with the gearing wheels, $\mathrm{B}^{\prime} \mathrm{B}^{\prime}$. C C are two solid iron wheels, working in boxes, A^{\prime}, at right angles to D D. These four wheels, D D and C C, turn one another by means of cogs, and revolving the same way, meet in the center. On their edges are cut a series of grooves or dies, each forming one quarter of a link; thus when dies, 1111 , meet at the center, in turning round, any plastic material interposed would be cut by them into a link of a chain as would 222 or 3333
The operation is as follows :-A bar of iron or other metal heated to the welding heat, having the section shown in Fig. 2 is passed through the center of the wheels, D D and C C, which in revolving carry the bar downwards with them. In consequence of the dies or impressions on the periphery, however, it is cut; and, as each die is the quarter of a link when it is met by the four dies, the bar is cut into a perfect link, and this link cutting goes on as long as the har is fed; thus turning out
a chain of any length that may be desired. It may be driven by any convenient power, either steam, water or horse. The arrows in Fig. 2 indicate the direction of the pressure in the cutting process.
For further information and particulars, address the inventor and patentee, Christian Sleppy, Wilkèsbarre, Pa.

Bank Note Paper.

A Bank of England note has some peculiar and interesting characteristics of manufacture, the paper being distinguished by its color, which is a peculiar white, such as is neither sold in the shops nor used for any other purpose ; by its thinness and transparency, qualities which prevent any of the printed part of the note being washed out by turpentine, or removed by the knife, unless a hole is made in the place thus practiced on; by its characteristic feel, a peculiar crispness and toughness, by which those accustomed to handle it distinguish the true notes instantly ; the wire or water mark, which is produced on the paper when in the state of pulp, and which is easily distinguished from a mark stamped on after the paper is completed; the three "deckle" edges-the mold contains two notes placed lengthwise, which are separated by a knife at a future stage of the process, this deckle or wooden frame of the paper mold producing the peculiar effect seen on the edges of uncut paper, and this edging being caused when the paper is in a state of pulp, precludes any successful imitation after the paper is made; also by the strength of the paper, which is made from new linen and cotton. In its "water leaf," or unsized condition, a bank note will support thirty-six pounds; and when one grain of size has been diffused through it, it will lift half a hundred weight.
If a little more care was taken by our State governments in regard to what sort of paper should be used in the printing of bank notes, the people would suffer much less from the spurious stuff now in circulation. In some
respects we are a heedless people, and have yet something to learn from the old nations of Europe.

Brookiyn Water Works.
Water-works to supply the neighboring city of Brooklyn, Long Island, with water have been under contract for upwards of a year, but they appear at this date to be progressing very slowly. The plan is to obtain the water by collecting together several mill streams on the lower side of the island, and to lead them either in an open canal or closed conduit to a low point near the city, from which the water is to be forced up by steam pumping to the top of the highest ground in the vicinity, from whence pipes are to supply the city. The reservoir on this hill is partly finished, the canal partly excavated, and any quantity of designs and estimates have been received for the pumping apparatus, but nothing further has transpired, and we hear it reported that the extreme low level at which the canal will have to run has been found to involve such serious difficulties that it is contemplated to change the plan, and at an expense of a million dollars more, to substitute a canal running at a level higher than the streams, with a pumping engine at each stream, to elevate the water into it.

What is it?

One of the savans at the late convention oi scientific men at Montreal insisted that coal was not of vegetable origin. All geologists at the present time say that it is, and we should like to know how he accounts for the gigantic ferns and monster pine trees which are found in nearly all coal formations, and seem to point directly to its vegetable origin. Soft coal is full of these, while anthracite contains comparatively few. This may be accounted for by the compact and hard nature of the latter, which would indicate that it has been subjected to greater pressure and changes in other ways sufficient to remove all traces of fossils either of animals or plants. There is, however, nothing like differing from the rest of the world, if you wish to be thought profound. We wish this wise one had given us his idea of what coal diel originate from, for it is not good policy to pull down one system without you have another to build up in its place.

Science among the Japanese.
M. Von Siebold, the distinguished scientific author, states that the knowledge of the natural sciences amongst the Japanese is much more extensive and profound than is generally supposed. They possess a great many learned treatises thereupon, and an admirable geological map of their island by Buntsjo. They are well acquainted with the systems of European naturalists, and have translations of the more important of their works. They have also a botanical diction. ary, in which an account is given of not fewer than 5,300 objects, and is embellished with. numerous fine engravings.

Mr. J. R. Baird, of Vincennes, Ind., has sent us a specimen of his daughter's workwomanship-one of the most skillful and ingenious pieces of lady's work we have ever seen. It consists in four stockings, knitted at one operation, on only four needles. The stockings are one inside the other, and each distinct and separate. It is now on exhibition at the Crystal Palace.

Scientific gmmricant.

5 Issued from the United States Patent Office

 or tife wees ending septeaber 15, 1857. shell an
set forth
Clezaning Rioz-Wilson Ager, of Rhorsburg Pa. : Pa
claim the method of cleansing rice by submitting the
mixture
 produced by su
iy as set forth.

 I also claim securing the cone and disk, or plate, I,
to the ghati, throughthe intervention of the face plate
H , substantially as set forth, so that said cone and disk H, sy astantially as set forthe so that said oone and disk
may any bime be removed and replaced by others
when they become dull or worn away.

 show, in combination witt the rotating beaters. K, , an
frame, e. with bolting cloth, fottaned the whole f
ing arranged as shown, for the purpose set forth. TThis invention consists in the employment of a sta-
tionary shell or case, which is formed of metal or wood tionary shell or case, which is formed of metal or wood,
and of a peculiar shape. It has a frame covered with and of a peculiar shape It has a frame covered with
bolting cloth fastened to one side. Within the case a rotating shaft is placed, having beaters attached, an
the whole so arranged that the beaters rotating in con junction with the form of the shell, will cause the flour junction with the form of the shell, wil
and bran to be thoroughly separated.]
Kinaping Dovah-Hiram Berdan, of New York
City: 1 claim the employment in a kheading machine of a a oppar, \mathbf{E}, applied a a
sulstantally as set forth.
CA flopper or rigid bar is so arranged that it is mad to rotate through the dough and to mix the flour, water,
and yeast, or other ferment, thoroughly together; after which it cuts the dough up in strips, and then re-unites
it, all the while working it up and down, so as to a ord it, all the while working it u
a light and pleasant bread.]

 SEstaining Winow Sasi-Edward T. Briggs of metal strip, g, in combination with the angular grooved
gupport,, , and spring, c, in the manner and for the
purpose set forth.
 and composed of the materials as
GAs Genera 0 ars-John Butler, of Brooklyn, N. Y.
I an aware that a patent has bee granted for the use
of tused metals, by passing he products of the distilla
 temperature, for the purpose of passing the products o
the destructive distilation of coal and other substances,
teden through said metalis.
Nor do I clain said metals for bringing distilled car-
bon-hydrous vapors in immediate contact with the sur bon-hydrous vapors in immediate contact with the sur
face of the eame..
Nor duimed metal for the purpose of floating
the carbonaceous matter usually deposited in retorts. the carbonaceous matter usually deposited in retorts.
I claim generating illuminating gas in a retort over
the surface of milte lead, or other fusible metal, in the
manner set forth. Exoasarons-Z
the attaching the Butt, of Lincolntown, N. C. : : I claim
G^{\prime}, in combination with the cross bar, p, resting upon the frame to the scoop itself
by pivotsor otherwise, for the purpose of bearing and
supporting it whilst loading and regulating the depth it supporting it whilst loading and regulating the depth it
isto enter the ground, and for taking the strain of the
chains and windlass. chains and windlass.
Again, claim as invention the elevation of the
loaded excavator hy horse power, in the manner de-
acribed or loaded excavator by horse power, in the manner de
scribed, or any other method substantially the same.
Ilike wise claim the arrangement and combination of the gate catch rod and lever, so that the gate can be
opened and closed by the driver without his leaving his
seat, substantially as shown and described.
 cement have, been used, and there ore do not wish to be
understood as claiming any of them when take sep
arately, nor the whole of the m when used to tother se arately, nor the whole of the when whed together.
But w . clain the precise maner emploge of mixing
and compounding the ingredients composing the cement. When combined with the pronprtions of ingredients, as
specitioe by which process of mixing and ompounding
and combination of ingredients, and applying the cespeccombination of ingredients, and applying the ce-
man com
mento unse, weare enabled to decomposeor destroythe
ammonia contained in the coal tar, to prevent it from ammonia contained in the coal tar, to prevent it from
destroning the cement and aeting the anvas on which
it it spreat and at the same time produce a ement that
is not brittle and subject to cracking, but hard enough
 the same time elastic enough to expand and contract to
siitanll condition of heat and cold, and make the ce
ment water-proof.
Mowing MAchings-A. H. Caryl, of Sanduky, Ohio
I claim the combination of the rearportion of the tongue
or hounds, E, with the main or wheel frame, A, and or hounds, E E, with the main or wheel fran
geat., G, gaid parto eving arranged for joint
in the man ner and for the purposes set forth.
Rakisg Atrachignt For Rraprrse-A. H. Caryl, of
Sanduky, Ohio. I claim first, Raising the rake in the
plane in which it is inclined by means of the devices
 subetantially as set forth.
Third, Inclining the
Third, Inclining the rake from a vertical plane to
correspond with the lengtho of the grain being cut, by
means of the devices described.

 rifice of the socket, therebjy geeping it clean.

[These bridges arध designed to supersede the ordinary nes in places where they are liable to be carried away by floods or ice accumulating round the piers, the whole
of the bridge being capable of being lifted with the flood and again falling into its proper place without injury.]

 oitined vytut wo ememi-iritese and then rotary motion

 Ean on in instrumben whe

 and aranager witit the
the purposes exet orth
the
[This machine has the stuff which is to be cut centered
in a vibrating frame, the axis of which is oblique, relain a vibrating frame, the axis of which is oblique, rela-
tively with the stuff, and then by employing a traveling saw and other contrivances, the spokes
direct from the stuff at one operation.]
 tion and wear on the warps. that takee place when the
eye in knoted only either at top or bottom
I claim the improved mode of making a harness so I claim the improved mode of making. a harness so
that its lease and not shal be below itg eye, and the
threads of each loop be caused to pasa against one side

 threads of the uo ure side of the harreas in such mananner
ast on make both thread of each loop pass against one
aide of the shaft.
 in the composition for increasing the transparency of
tracing muslin, as specified.
 in regulating the action of wind-wheels, the gectional
disk operating in the manner anbstantially as set forth.
 Bur machine eeparately.
But I lainement ant and onerangement and
cally as shown, for the purposes set forth.

 described.

 Drip Pots For SUGAR-Hocgbs-John Turl, of New
York City I claim constructing the pot of two metal parts or haives, A A, formed or "struck u"' in proper
shape by any proper meana, and connected together
rivets, an by brazing, or in any suitable way, substanrivets, a, by brazi
tially as described.
CThe ordinary drip pots in a sugar-house are either
earthenware or cast and sheet iron combined. The tor earthenware or catt and sheet iron combined. The for-
mer have to be made very heavy, to prevent breakage, mer have to be made very heavy, to prevent breakage,
and even then they are liable to fracture, and the others are liable to leak, from the diveraity of their halves. The
subject of this patent is, however, made in two halves of sheet metal, and brazed together, thus securing lightness and durability.]
 $=$
 cartriadge to the bullet, substantially as described. by
making it manaler than the bullet, and driving it into a
cavity in the rear of the bullet. CThis invention consists in making the shell of the
cartridge of metal tube, fitting into a seat, and swage or otherwise to receive the bullet.]
 an elaastic diaphragm in photographic
purpose and in the manner spectied.
BRRWERg' Coourg -Adam Wood, of Pitsburg, Pa.
I do not claim in the abstract, or separately considered, the corrugated sheet metal bottoms, viewed only as a
means to compansate for the expansion and contraction means to compenanate for the expansion and contraction
of the metal. for this in a well-kinown mode of obviating
this dificulty and is employed in metal plates for rooing and other parposes.
of either do 1 claim the cooling of the liquor by means
of wate tube with which the liquor is brought in
contact irrespective of the arrangement shown, for contact, irrespective of the arrangement sh
such mean have been previoully mployed.
But I claim constructing the coolera in
 bottoms, and the bottoms, allowed to expand and con- con-
tract freely without injury, by which the bottom of the

Malt liquor has to be cooled very quickly after the hops have been boiled with it, or it would become acia, effected by pouring the liquor into large, shallow wooden vessels, but even though this process was very quick, acidification often eet in before the whole was
cooled. The inventor of these coolers obviates this by having a double bottom of corrugated iron to the coole through which cold water is continually running.]

Trpn Serting And Distributing Macring-Timothy
Alden, of New York City: I claim, first. The method substantialiy as described for conveying the type to and
from the type cases, and the composing and seting
tables, consisting of a type carrier in combination with a series of convey ors, which are capable of receiving any
type indiscriminately, and also of receiving an indica-
tion representing the tye al tion representing the thy type ao roceevivec, or or than an requirira-d,
whereby that type may be deposited into or taken from the type cases, substantially as set forth.
Second, The described or any equival
 Hillly as set forth.
Third, Giving to the conveyor or vibratory or tilting
motion motion upon its entral pin whereby its gripping end is
made to closely approach the place at wlith the con
veyor it to receive or deopit a type for the purposes, veyor is to receive or deposit a type for the
and in the maner substantilly as described
Fourth, In combination with the devices or Fourth, In combination with the devices or mechan
ism for receiving and tor delivering the typesinion and
from the type cases as deacribed, or their equivalents, claim arranging the types edgewise in said cases, where-
by, for all the ypes of font, an uniform throy or action
m, may be given to said mechanism.
Tifth, In comination with the type channela, the
mectanism for pushing out the tyyer consistingo, the
rack, pendulum lever, and Progeliling rod, and the

 or equivalents as described.
Seventh, The method of discharging the type from a
distributing conveyor into tha type channels, or of
causing it to be reoeived from such channel into a setting distributing conveyor into tha type chan inels, or of
causing it to ob roeeived from such channel into a seting
conveyor consing of the can, dina and the pusher
plate, b 6, or equivivalents thereot a d deacribe plate, b 6 , or equivalents the cant as described ane pusher
Eighthe The mish or seting the gripping bolt
upon the conver and for upon the conveyors, and for releasing the same, congist-
ing of the stationary can
ine setting of said bolt, and for the releasking lever, for, for
thereof, of

 ed in said case, and which device shall cause, at the
proper place, an action of the conveyor, to receive or to
deposit proper place, an action of the conveyor, to receive or to
deposit a type, as the case may be, In acoordance with
any given set upon the conve yor, as set forth. Tenth, The stationary inclined pieces, g 7 , in combi-
nation with the rooves of the ring, m , for restoring
the indicating points upon the cones, to the indicating points upon the conveyor to a zero o
starting point as described.
Eleven Eleventh, The movable indicators, e 7, or their equi-
valents, in combination with the erooves in the ring,
m 5 , and with the shifting bars of the distributing me
chat cwefth, The method of setting the distributing indi-
catorbymeans of the system of tevers, $Z 3$, or equiva-
lents mechanism and 1ent mechanism, so constructed and operated aspe, by
acted unon by a ystem on llcks upon the the
which certain parts sre allowed to be brought into
and the plan or combination of nicks, and whereby the ap-
propriate case or place of doposit of type is indicated Thirteenth, The graduated stop, c 4 , in combination
with the tndi,
 and 14, for restoring said levers into position whe
about to return for a nev. seting, and for setting th
frame, 3 , against its guide plate, as described
Fourte
 propercombing in the type, and for effecting
 withth operating cams aupon the shaft, i, \&, or any
equivanentcombination, wherely the same results will
be produced, as described. be produced, as described.
Fftteenth The mechanism for feeding up the column
of type, and for elevating the successive lines thereof
 combination with the frame, X , with the neans for de
pressing pressing the bolt, d 3. and with the ratchet having th
engaging and disengagng wedges as described.
Seventeenth, I claim, in combination Seventeenth, I claim, in combination with the keys,
the arrangement of mechanism, whersby the senarate the arrangement of mechanism, whersby the senarate
difterent tigganal represented by each of a great number
of keys may be produced by a less number of indicators
as described. of keys may be produced by a less number of indicator
as described.
Eightenth, The radially revolving registering levers,
in combination with the register wheet, and with th in combination with the register wheel, and with the
keysan described, or the equivalents theroof. Nineteenth, The indenendent registering apparatus
constructed as described, or its equivalent apparatus,
which will effect the recor Which will effect the recording of the letters or signs, as
indicated by the eys, indenendenty ot the type carry
ind

Rexpring And Furing Suns-G. W. La Baw, of
Jersey City, N. J., assignor to himself and Chas. A. Durgin, of New York City : I do not limit myself to any
particilar meenhanim for operating the vertical rollers
around which the sails wind, as such mechanism may be I claim the arrangement of vertical rollers in front or
rear of the mast, and operated by mechanism from the
deck of the vesse and rear of the mast, and operated
deck of the vessel, and wherehy a macanabled to operate
separately
or toether the sails on each mast from the

 scribed, and carrying hinged vibrating arms provrded
withsprings for holding and operating the file, substan-
tially n the manner described.

 steam pressure applied to pistons other than the main
working pistong have been used, and therefore we dis
claim such use. We are also aware of the patent or Norman W. Wheeler, July 31, 1853, and we therefor But we claim the arrangement of the steam channels,
a, b, c which are opened and closed by the travel of the
 arens or their
and set forth.

 capable of turning vertically, and slididing horizontally,
and which has arranged on tis back end alocking pate
I, which
gside
sid

 claim the combination of the molds, E, of the frame A
and hopper, D, constructed, arranged and operated to-
gether, ubstantially in the manner and for the purpose
described.
 of Boston, Mass. II I clain the combination of a cutter,
or cutters witha yieling slide, substantially as set forth
for the purpose specified.

 tant from each end of the bolt.
seocond, claim the slid \mathbf{K}, and wedges
constucted and operating in the manner substantiall
as set forth. re-fesurs.

[For tbe Scientific American.]

The Aquarium or Aqua-Vivarium
We have requested the gentleman whose name appears at the end of this description to write it for us, believing that it will prove of interest to our readers:-
I will commence by giving a brief account of the history and theory of the Aquarium. The first hint on this subject is found in a book published at Leyden, in 1778, wherein it is stated that plants immersed in water, and exposed to the action of light, emit oxygen gas. In 1833, a Mr. Danbury, and in 1837 a Mr. Ward, again promulgated the practica bility of supporting animal life by oxygen furnished by vegetable growth. In 1852, a Mr. Warrington and a Mr. Gorse almost simultaneously made experiments, which have resulted in the successful sustenance of animal life in connection with vegetable existence. The Aquarium, or Aqua Vivarium, is founded upon the principle that aquatic plants, while growing, emit sufficient oxygen gas for the support of animal life to a limited extent; the plants, in their turn, forming their solid structure by means of the carbonic acid thrown of by the animals in the process of breathing. This is the theory ; the application is as fol lows:-A clean, tight vessel, with glass sides, is employed for a tank. The bottom is first covered an inch deep with clean, coarse sand, upon which I have found it best to put a thin covering of dark gravel. A rude rock-wor adds much to the beauty of the tank and to
the comfort of its inhabitants. Over the surface there should be scattered a few aquatic plants-if marine, attached to stones or shells;
if fresh water, having their roots buried in the sand; and water is then added, and the whole
left for a week or more, until the plants are acclimatized or more, until the plants are thus ready, the "stock" may be added by degrees, until the proper balance of animal and vegetable life is effected. In both marine and fresh water Aquaria, a mucous or fungous growth is soon developed, which may be kept
down by pond snails, or by the buccinum or down by pond snails, or by the buccinum or salt water snail.
My first attempt was with gold fish (Cyyprinus); but not being able to obtain the proper plants, I stocked a confectioner's glass jar with a few other plants from the sea, and there soon appeared a large number of small animals, which, viewed by lamp-light, were very interesting. I have found that very deep and narrow- tanks, of various shapes, have not succeeded so well as those having a much greater breadth than depth. The tank which I successfully stocked was of an octagonal form, of thirty inches in diameter and about eight in depth. Excepting the great difficulty of rendering it tight, this tank has succeeded admirably. After being in use for a long time, the rock-work is still covered with vegetation, ańd crabs, minnows, eels and mollusca still sport and wrangle in the home which they have so long occupied.
The animals which I have found to thrive most easily, and to accommodate themselves most readily to their new home, are the minnows or killy fish, the stickleback (Gasterosteus trachurus), the shrimp, small specimens of lobsters, hermit crabs, serpulidans, small common crabs, eels, and star-fishes. I have been told that the small sheeps-head (Sargus ovis) is also very good. The patella, the buccinum or sea-snail, the purpara or whelk, and several varieties of crepidulas, have also succeeded nicely. The scallop, one of the most beautiful of animals, whose iridescent hues are marvelous in their brilliancy, I have not been able to keep for any length of time The barnacle, also so interesting in its mode of breathing and of catching its prey, has not lived long. The spider crab, which the ancients held emblematic of wisdom, and which is noted for his fondness of dress and mischief, has been found altogether too reckless of the consequences of his pranks, and has been banished to a tank keptfor "unruly offenders." No animal in a tank, however, has behaved with more propriety and been productive of more amusement than the small species of hermit or soldier crab. They are ever active. and constantly ready to change their shells for their own gratification or that of beholders. They seldom pass each other without dis puting the right of way, and yet never in jure each other at all. A little incident will show the pleasure that may be found in observing them. While watching my tank, I saw a hermit, crab cogitating upon the expediency of vacating his shell for an empty one lying near him. After mature deliberation, he concluded upon the exchange, and suddenly popping his tail into the vacant shell, he crow, ded out a cloud of particles, probably of decayed animal matter; this attracted the attention of a shoal of minnows, which immediately attacked the poor hermit, endeavoring to draw him from his shell. But a new claimant immediately appeared in the person of a common crab, who clasped the hermit in his claws and attempted to carry him off by "force of arms." The minnows, unwilling to be thus defrauded, now beset the robber, while the hermit, taking advantage of this diversion, crept quickly away from the scene of strife; doubtless convinced that "there is no place like home."
Prawns and shrimps are also objects worthy of admiration. No bird sails through the air with more gentleness than these fish float through the water. Star-fishes, likewise, are very pleasing; they live long in confinement, but are, however, quite greedy, and the larger ones will soon destroy a stock of buccinums. The small sheeps-head is said by those who have kept it to be very hardy. Many other aquatic animals will doubtless be found to be as suitable as those already named.

The study (for stuly it is) of Aquaria is but yet in its infancy in this country; and we may
easonably hope that when those who are lose obse hope that when those wested in this matter, we shall learn much more of the "private life" of the inhabitants of the ocean than we have ever hitherto known. Probably no such facilities for the study of natural history have ever been offered as are now presented by the Aquarium. We have in our rooms, where we may examine it at our leisure, a sort of section of the ocean, whose inhabitants may be examined in their natural abode, and under most favorablecircumstances. With such facilities it will be easy to learn more in a few months' observation than we have heredor ore been able to learn by years of examination of dead or dying specimens.
Tanks may be made of various forms. The simplest are made of confectioners' jars or any open-mouthed glass vessels. These will answer very well for small specimens; but the best kind, most proper for the fish, and well suited for observation, are those made in a rectangular form, with four glass siades. It has been found very difficult to make these permanently tight, and at the same time free from the taint of cement. This has, however, been remedied, I believe, by some of the dealers in tanks, so that they may now be purchased so constructed as to be put into use without fear of leakage.

In a fresh water tank we have no anemones nor hermit crabs; but we have newts, the stickleback which builds its nest beneath the waters, the water-beetles, the tadpoles, and numberless others, which fully compensate for the absence of those that are found only in sea-water.
The speedy popularity of this piscatorial and botanical "institution"-the Aquarium is undoubted. All that is needed is to exercise patient perseverance, regular attention, and, above all, perfect cleanliness. No decayed matter, animal or vegetable, must be permitted in the tank. A strict care to not overstock or crowd the animals, and a determination to overcome obstacles, will insure success; and the Aquarium will become-what it has already become to thousands in Europe-a "new pleasure.

Chas. E. Hammett, Jr.
Newport, R. I., Sept. 21, 1857.
[At the polite invitation of our correspondent, we were permitted, while spending some time at Newport this summer, to examine the specimens to which he alludes; and we have seldom spent an hour more pleasantly. Those who may feel a desire to behold the wonders of the deep, in miniature, are referred to the Aquarium of our correspondent, or to Barnum's Museum, in this city, where some good specimens are on exhibition. Mr. Hammett's modesty forbids his intimating in the above article that he is prepared to furnish Aquaria tanks of superior construction (an improvemeut of his own) to such persons as may desire to try their skill in raising the pisces, molluscs, and articulates of the mighty ocean, and to derive instruction from observing the lifeand habits of those curious creatures.-ED.

The Teeth and the Beard.

Messiss. Editors-The remarks of "Dentist" on "the best means of securing a healthy denture" have induced me to suggest whether wearing the beard might not promote that desirable result? Hair is among the best nonconductors; and to deprive the face of that natural protection to the delicate nerves of the maxillary region, must, it seems to me, expose the teeth to the deleterious action of atmospheric vicissitude.
S. Y. A. L.
[We think that the growth or want of beard can only affect the teeth by protecting them or otherwise from external cold, as the teeth are formed and grow from the jaw which is separate and distinct from the surface of the skin, in which are the juices that afford nutritriment to the hair. We know many persons having naturally excellent teeth, who are very far from hirsute, and. also persons with large fine beards and very bad teeth; so it
does not seem as if there was any connection between the two.

Aluminum.

A new method of making this metal has recently been patented in England by F. W. Gerhard. It consists in placing fluoride of aluminum in an iron oven, which may be heated in various ways. This oven is first strongly heated, and on the floor thereof is placed a number of shallow dishes. A number of these dishes are filled with dry and well powdered fluoride of aluminum, and the remainder with iron filings. They are so arranged that all of those dishes which contain the fluoride are on all sides surrounded by dishes containing the iron filings. The oven is then closed and luted, and the heat increased to redness, after which a stream of dry hydrogen gas is introduced. The effect produced is, that the hydrogen gas combines with the fluorine, and forms hydrofluoric acid, which acid is taken up by the iron, and is thereby converted into fluoride of iron, whilst the resulting aluminum remains in the metallic state in the bottom of the trays containing the fluoride.

The Electric Telegraph.
The first overhead telegraph in London has just been successfully put up by an enterprising firm in that city, to connect their two places of business. The distance between the two establishments is about one-third of a mile, and the whole space is traversed by a single wire, suspended from pole to pole, at a great elevation above the intermediate houses. It is understood that another will shortly be erected by the authorities, to connect the police courts, the police stations, and the fire brigade stations throughout the metropolis, by an economical system of overhead telegraph, devoting one wire to detective police purposes, and one to fire purposes. The telegraph has been used for all these purposes in this country for some time. Uncle John is, therefore, behind Uncle Sam by some years in the domestic adaptation of electricity.

Bronse Powder.

The London Builder says that Herr Konig has made a series of experiments to ascertain the method of preparing this substance, hitherto a secret. From the result, it appears that the several varieties of bronze powdered leaf are each composed of nearly the same proportions of copper, zinc, and tin, and that the variation of color is owing to different degrees of oxydation, which have been produced by heating the alloy at different temperatures.

> - +ont-

An improvement in the manufacture of rock and sea salt has been patented in England, which consists in fusing the raw salt, and keeping it for some time in a state of tranquil fusion, decanting it into hot molds, or letting it cool slowly ; in this manner all the impurities are separated from the mass in fusion, and are eliminated by crystallization by the dry process, which corresponds with crystallization by the wet one.

Tin Plates.

Tin plates-that is, tin plates of iron dipped into molten tin, which covers the iron com-pletely-are manufactured in South Wales and Staffordshire, to the extent now of about 900,000 boxes annually, equal to 56,000 tuns, and valued at over five millions of dollars. In England, almost every article of tinware is formed from these plates. Nearly two-thirds of the total manufacture are exported, principally from Liverpool to the United States

Telegraph in Brazil.

A proposition has been made to the Brazilian government for the construction of a submarine telegraph from Pernambuco to San Pedro de Sul, communicating with various intermediate places along the coast.

The longest railroad in the world is the Grapd Trunk of Canada, 856 miles of which are open. When finished it will be 1,112 miles

