

 cifitid also claim the yoke embracing the whole set of
tuublerg, in combination with a pin
 enabing the tumblers to be shoved toge ther so ns to
cove each other, whhereby the elots of the tumblerg are
caused not to coincide, thus preventing the bolt from
being withdrawn.

 or torward motion to the cloth. or other material, while
being sewed, by means of a mheel which movesthe cloth
while revolving as that has been done before.
But I claim the specific mechanionn described, consist
 posé specified. \quad re-is8urs
 gave, C, an
weth each
setth.

Silver and its Uses.
This metal possesses great interest. Its frequent mention in the Scriptures-the shekels of silver, and the talents of silver-indicates its ancient use and application as money. It is one of those metals which the alchemists of old termed "noble" metals, because they found that it could not be rusted; moreover, they could not dissolve it in any menstruum they possessed. Fire only made it brighter Allusion is made to this fact in the Book of Job, to illustrate the triumph of a good heart over misfortunc. Silver is found in all parts of the world, and England yields its share. Bishop Watson, one of our carly chemical writers, says that the silver which was procured from the mines in Cardiganshire by Sir Hugh Middleton, amounting to $£ 2,000$ value per month, enabled him to construct that val-
uable work which we call the New River, for the purpose of supplying a portion of London with water. The bishop also mentions that a mint was established at Aberystwith for coining silver. In the English mines this metal is found mixed with lead, from which it is separated by a very simple process invented by Mr. Pattison, of Newcastle. The mixed metal is melted in an iron pot, and is then al lowed to cool. The silver "sets" before the lead, and is then separated by simply straining it through a colander. Silver can be beaten out into leaves so thin that one grain of it can be made to cover a surface of more drawn from it finer than a human hair. In these respects it has a nearer resemblance to gold than any other metal. With the me chanical qualities of silver most readers are pretty well acquainted; but as very little is known of its chemical qualities, it may be well to mention them. Silver has, as it were, in the metallic state in which we generally see it; and although the chemist may dissolve it, and overcome its "nobility," yet it is so prone to assume its natural state, that even daylight will restore it to its pristine beauty It is here that chemistry shows its great power in adapting a peculiar property of a materia to some use in the arts and manufactures So we see that silver is the main instrument in the photographic art. Silver is dissolved some salt is added, you look at it, and the re sult is that your shadow is their indelibly printed. The poets may well liken soft-flow ing rivers to " silver threads covering the green velvet of the earth;" but such types are prosy when we compare them with the painting after life produced by a sunbeam on a fabric imbued with silver. Again, how carefully the
good housewife marks her linen! She well knows how it is thus preserved for her own use, but perhaps is not aware of the fact that the indelible ink is nothing more than the solution of a five-cent piece, for which she willingly pays ten cents. Sometimes a little fungus takes up its abode on the human skin;
it grows very fast, but does not cause much pain; nevertheless, it is so insidious that if not carefully watched it would destroy life. The doctor comes, he rubs it over with a little caustic, and health is restored. If you ask what this caustic is called, the answer is "ni trate of silver."

Septimus Piesse.

Screw-monthed Bottles,

Messrs. Editors-In No. 23 of the present volume of the Scientific Ahierican will be found an account of an ostensibly new invention, recently patented in Great Britain, by which glass bottles are made with female screws in their noses, necks or mouths. If you will refer to the List of Claims published in No. 49 of Vol. X of the Scientific American, (August 18, 1855,) you will see that Amasa Stone, of Philadelphia, Pa., patented a tool for forming a screw in the nose or neck of a bottle; and this must be the same thing as the English device described in the Illustrated Inventor. Mr. Stone's tool has been in use in this country ever since the date of the patent; and I will warrant that all bottles made thereby will tightly hold
their corks. If any of your readers wan bottles made in that fashion, or a tool for making them, I can tell them where they may obtain either on very reasonable terms. I send you this merely to assure you that "Old England" is by no means ahead of Young America" in respect to bottle-noses. A Subscriber.
Philadelphia, Pa., March, 1858.

[For the Scientific American.]

Independent Engines and Pumps in LocoThe able superintendent (Mr. Gregg) at Rome, N. Y., of the Watertown and Rome Railroad, who is always on the qui vive in respect to beneficial improvements in the machinery under his charge, has procured one of "Gatley's engines and pump," and placed them on the locomotive R.B. Doxtaler, where they occupy a space of only two and a half by one foot each way, just without the "driver's cab," on a line with the engineer's bench, consequently they are always under his eye. The locomotive is of Taunton make. These auxiliaries require no alteration, and the pipe connections appear to be most readily adapted to them.
I am not informed as to the expense, but so far as I am able to estimate, the advantages of them will afford full compensation for any extra outlay. If the ordinary pumps are dispensed with, the additional cost of the engine and pumps will be but trifling. The removal of the present pump fixtures, thereby leaving the other machinery more accessible, is, in my opinion, a very great advantage. To be able to transfer water from the tender to the boiler (which cannot be done by the present pump arrangement in use) while the locomotive is waiting at a station, or when detained in a snow-drift, is an advantage obtained by the independent small engine and pump, too obvious to require further remarks in their favor. X. X. W.

Glucose and Sirup.

Messrs. Edirors-I have seen it stated in some papers that glucose or grape sugar never crystallized. This is a mistake. Glucose is made in large quantities from potatoes, in France and England, and has as fine and crystalline an appearance as any sugar. For a long time only sirup could be produced; but it was found at last that if the purified sirup was rapidly evaporated to 2 density of 45° Baume, and then left to cool slowly in a warm place, it all crystallized in a solid mass, but if stirred occasionally, granular crystals were obtained. This sugar is much used to adulterate other sugar, but its sweetening properties are greatly inferior to cane sugar, the ratio being variously estimated at from two or three to five. Honey is a mixture of grape sugar and fruit sugar. The grape sugar in it is mostly capable of crystallization; it often separates from the fluid portion, and is then said to be candied. This sugar is often found in raisins in the form of small gritty crystals, hence its name. As to the value of the Sorgho Saccharum sirup as a marketable article, I am not prepared to speak, but I do not think it can be sold here. People buy some of it from curiosity, but seldom more than once. I have been assured by those who have the most of it, that they can find no market for it, and they intend to distil it, for which purpose it is very well suited. As many as 225 gallons of moderately concentrated sirup have been produced here from an acre of ground planted with the cane.
Interesting reports on the optical and other relations of crystalline and amorphous grape sugar, and on the other varieties, have been made during the past year by Dubrunfait, Biot, and Bechamp, in France, and by Erdman and Kobill, in Germany.
. Camplele.
Dayton, Ohio, March, 1858.

Operation on an Elephant

During the late visit to Hull, England, of Wombwell's menagerie, the elephant "Chubby" underwent an operation which, from its
surgical records. For twelve or fifteen months previously, a tumor had been gathering on Chubby's off-side thigh. It grew, and grew, and grew, till at last men began to doubt whether the elephant was an appendage of the tumor, or the tumor an appendage of the elephant; for the larger grew the one, the smaller grew the other. Chubby sickened, lost his appetite, pined away ; his skin became "a world too wide." The sobriquet of Chubby, which his once fair proportions merited, grew to be a mockery, and it became eviden that unless the tumor and Chubby dissolved partnership, the former would soon be sole representative of the firm. Change of air was tried, but the tumor only derived advantage. Medical advice was called in ; but alas it proved another nut which the faculty could not crack. Nine famous "leeches," at nine va rious stations, tried their juleps and catholicons, but in vain ; no one daring to have re course to the knife with such a patient. Such was the state of matters when Chubby paid his farewell visit, as it was supposed, last Hull fair. His friends, as a last resource applied to one of their townsmen, a veterinar surgeon, Mr. Tom B. H. Hyde, Jun. Mr. Hyde went, saw, and boldly resolved to use the lancet. The operation was performed a few days after the fair, and lasted two hours ; Chubby undergoing it with such fortitude and good sense as could only be derived from a consciousness of its object. The tumor, when removed, weighed five pounds, and one of the fangs had to be searched out with the knife for a foot down the thigh. The operation proved eminently successful. Every fresh bulletin announced his improving health till the latter end of November, when Mr. Hyde pronounced his patient thoroughly restored, and capable of returning to business. Chubby at once took the train to join his friends, Messrs. Wombwell \& Co., and when last heard of, his appetite and good looks were the theme of general admiration.

Recent Patented Improvements. The following inventions have been patented this week, as will be found by referring to our List of Claims on another page :-
Grappling Implement-Thomas Sheehan, of Dunkirk, N. Y., has invented an improvement in implements which are employed for grasping submerged articles at the bottom of rivers, wells, \&c., and raising them to the surface. The object of the invention is to produce an implement over which the operator may have perfect control, the jaws being allowed to distend to a greater or less degree as may be desired, and also permitted to close forcibly or gradually at any depth at which the implement is capable of being used.
Calender Clock-H. Skinner, of Huron, Ohio, has invented a new clock for telling the day of the month, the month itself, and hour. It does this by a simple arrangement of mechanism that accommodates itself to the varying lengths of the months, and gives February only twenty-eight days in leap year. It is less complicated than those usually made to effect the same purpose, and does great credit to the ingenuity of the inventor.

Machine for making Horse Shoes.This is an improvement on a machine for the same purpose patented July 29, 1857, by B. Young and S. Titus. The invention consists in the employment of cutting shears and a feeding device, auxiliary guides, and a vibrating bar or loosening rod, arranged and applied to the above machine so as to facilitate its operation, and ensure the perfection of its work, as well as increase the quantity turned out. It is the invention of H. A. Wills, of Keeseville, N. Y.
Tue mold on decayed fruit, stale bread, moist wood, \&c., is shown by the microscope to be plants, bearing leaves, flowers, and seeds, and increasing with incredible rapidity, for in a few hours the seeds spring up, arrive at maturity, and bring forth seeds themselves, so th
day.

