

R．M．，of N．Y．－Your idea that the Indian wmmer is caused by the latent heat given off in tue freczing of the great caused by the latent heat given off in tue freczing of the great
talies we do not believe is sound．The temperatare of the atr kakes we do not belleve is sound，The temperature of the a freezo the water．
O．P．R．，of Mass．－A new stove burns better than \％n olione，becaue it is clean．There are many places where thí solt cilluta，waicu raturlis the draft，for air passes more easily ovar smooth than rough surfaces
3．Wo，of Con 1 ．－Siabstances loosely compressed are not so good conduotors of heat as the same material tight＇y pacied，for the reason that the continuity is α iminished，and the alr imprlsuned in the interstices．
T．M．F．，of Minn．－It is a well－known law that liquids tresomit force equally in all d rections，and with the same in． tanally．
W．W．S．of Conn．－It is perfectly practicable to heat water to very noar the boiling polatby the exhaust steam，but the heater wasd be propers mad． pressures or，in ocher words，choke the exbanst．
R．L．，of N．J．－We donot isnow which is the best＂piace for woses in thas coantry．We are told that in Califorma wages for whoas tho same that they are in Neiv York，In Oberstein， Rbeusil Bavaria，they hare workmen for $\$ 150$ per week．Avoid Rbensus
Oberateln
W．B．，of Iatb－You mast decide for yourself whether it will pay or not to take out a patent．Ios；a thing that will rua by wiad and makeits o，vo wind at the same time，is a ventable pperatar 2ation．
M．U．，of afe，asks：－mas the purchaser of part saterestin a patent tioe right to manufacture ayd sell without the consent of the other owners，and appropriate tie profits wholly to bls own use！＂Answer－Yea
W．H．S．，of N．J．－The address of the inventor of the plan for seasoning lumber about which you maure，is H．G Bulkley，Cleveland，Ohio．
G．T．，of N．Y．－A rifle ball fired vertically upward would fall with the same velocity that it rose，in a vacua but it will not in the air．The resisance of the atmosphere prevents the ball from rising so high as it would in a vacuum further checks its velocity durivg its descen
J．W．F．，of Mo．－The inventive ingenuity of the coun－ try las been directod for many years to plans for warming air for dwelllngi，and we should suppose that some of these would be suited to your purpose．Bones are softened for aghe tural pur－ poses and a co tr cis by phurle acid，of lime，It will not act on the bome．
An Old Subscriber，of N．Y．－The rea：on why the St． John boiler explosion was less disastrous than is usual with Weft． vonn boiler explosions，is，that the St．John was run with low pressure steam，whule the Western steamboats are generally run pressure steam，whle the Western steamboats are generally run
With steam of very high pressure．The notion that some great mystery is involved in boiler explosions is incorrect；they alwas s result from impertect workmanship or，careless management．In the case of the St．John，the sheet that gave way had been cut pari）through，right along the line of fracture，by the chisel used in chipping off the overlapping sheet．
J．C．，of N．Y．－To make toilet soap of common soap， mix with it vanilla or any other periume that you prefer．
G．R．S．，of N．Y．－The harder steel is，the more brittle it is，and as the temper is drawn it grows tougher．Whenvery cold it is more brittle than when warm
A．S．，of Mass．－Round valves and hollow valve rods are not new．
J．A．S．，of N．J．－Probably you can obtain a patent．
S．Z．A．，of Pa．－＂The Clock ond Watchmaker＇s Man ual＂can be had of John Wiley，bookseller，New York．
A．J．，of Wis．－The grant of a patent does not relieve a patentee from the payment of the local license fees or taxes in any city，county or State．Patentees must comply with local laws， the same as othcr citizens．
P．T．，of Pa．－Run your circular saw 1,500 revolutions per minute．Your pulley should be 18 inches in diameter to get 800 revolutions．
C．H．M．，of Ill．－－For discussion of your questions we mustrefer you to Nystrom＇s worlk on screw propulsion－－though no detnite answers can be given to most of them．
W．M．，of Mass．－－Any person can obtain a patent in this country without declaring intention of citizenship．Natives of Nova Scotia must pay $\$ 500$ fee ior patent．New Brunswickers the same as American citizens．
W．W．，of N．H．－Scrap tin crowded into rat holes is said to be effectual in driving tnem away．

TO OUR ADVERTISING PATRONS．

Activertisers ar．reforred to the new list of rates at the head of the advertising page．Those who bave paid in advance for a certain number of insertions will have their advertisements continued at the old rates till the time paid for is up．All new advertise－ ments will be charged 40 cents a line each insertion． Advertisers will accommodate us，and save expense to themselves，by making their advertisements as short as possible．

Index for Change Wheels in Screw Cuteisem．
Messrs．Editors：－Believing that the following method of forming a table of change wheels for screw cutting lathes is entirely new，anci that it will be interesting and useful to a large class of your nu－ merous readers，I offer it for publication：

－ 5	－6
$20 \quad 25$	20
30	22
2835	24
3240	26
3645	28
$40 \quad 50$	30
4455	32

NNNNNNN弋工凡1
NOMOMN：

Corsidering the first sets of the diflerent columans， it will be seen that，while the wheel on the stud re－ mains uncbanged，the numbers representing the dif－ ferent wheels on the leading screw will form an arithmetical progression，whose common difference is equal to the quotient obtained by dividing the number of teeth on the stud wheel by the number of threads to the inch on the leading screw．This method of finding the common difference is a gen－ eral one for any progression which may be formed of the numbers at the top of the right－hand columns． Ail the columns are also in arithmetical progression． The common differences of the first two columns are respectively 4 and 5 ；of the second two， 2 and 3 ；of the third two， 4 and 7 ；and of the fourth two， 1 and 4 ． It will be seen that these common differences are he least two whole numbers having the same ratio as the number of threads to the inch on the leading screw and the number of threads to the inch it is desired to cut．Having found the first set－namely， 20 and 25 －by one of the various rules which have been published in the Scientific American，we can hen form the table almost as rapidly as we can write the numbers down，and to any desiratle extent．
The table may be extended to the left so as to in－ clude the numbers 1,2 ，and 3 ，if it is desired

Joserfi Spor．
Philadelphia，Pa．，Nov．14， 1865.

The Philosophy of top．

Messrs．Editors：－Can you tell us why a boy＇s top will assume and maintain an exect position while spinning？
Suspension Bridge，Nov．4， 1865.
［The same explanation that we gave，some time since，of the gyroscope，applies to a top．It you tie a stone to the end of a string and swing it about your finger，then while it is whirling，if a sheet of thin paper be held so that the stone will strike it at a sharp angle in a way to turn the stone from the plane of its revolution，thestonewill resist this effort to turn it from its course，and will pass through the yaper．If a sufficient number of stones are united to form a complete wheel，and the wheel is put in rota． tion，each one of the stones will resist any effort to change the plane of its revolution，and thus the whole wheel will resist any effort to change the plane of its rotation．When a top is rotating in an upright position，it cannct lean toward any side without changing the plane of rotation of all its parts；con－ sequently，so long as it is rapidly rotating it stands upright．

When the axis of the top is inclined，the force of gravitation tends to draw it downward，aud thus to change the planes of rotation of all its parts．If
you will take a wheel and incline its ase，you will see that the struggle to resist this chang will move the wheel forward，and will thusgive to it a crolation around an imaginary vertical axis．Even in his revo－ lution the planes of rotation are constantly canged， but the change is the less the more nearly the axis of the top coincides with the imaginary vertical axis about which it is revolving•，hence it is subjected to a constant tendency to assume an upright position， and the more rapidly its rotation，the stronger is this tendency．
The resistance offered by a rotating wheel or disk to any change in the plane of its rotation is worthy of consideration in many applications of mechanism． This resistance tends to make a fly wheel run true， and，consequently，to so wear its bearings as to cor－ rect any slight error in its original hanging．It in－ creases the resistance of locomotive and car wheels to the change in the direction of their motion in passing round a curve．It precludes the employment of Avery＇s engine for driving locomotives，and suggests that，if his engine should be used for this purpose，it should run on a vertical，instead of horizontal，axis． －IEDs．

A Question of Boiler Feed．

Messrs．Editors：－Having been a constant reader of your paper for a number of years allow me to ask you a fem questions．We ha ve an upright hoiler for hot water，and connected to the boiler is about 1,500 teet of pipe，for the purpose of heating a building． The boiler is in the cellar，and is fed through a three－ quarter pipe from a tank forty－five feet in hight，the water in the tank four teet deep，the pipe at the bottom of the tank，and about twenty pounds press－ ure of water．Attached to the boiler is a thermome－ ter to tell the temperature of the water．Now the question is，can the water be heated more than 212° without backing up into the tank．Some think it is the same as an open boiler，boiling in the open air， and the water cannot be heated more than 212° ； that if the thermometer indicates more than 212° it in not correct．I am of a different opinion．I think the water can be heated more than 212°＿enough more to overcome the pressure from the tank；how much more I cannot say．It is a fact that the water has been 230° without heating the water in the tank． But I have not tried to see how much higher temper－ ature I can get it without heating the water in the tank．Please let us know your opinion about it．

G．S．Kingsbury．
Somerville，Mass．，Nov．4， 1865.
［It is plain that the pressure of steam must be greater than the weight of water in the pipe in order to force this water back into the tank，As the water is heated in the lower end of the pipe，it will expand， and will be forced upward by the colder water of greater density sinking down and displacing it ；this circulation will convey heat from the boiler to the tank，aud will tend to equalize the temperature of the two．The rapidity of the circulation，and，con－ sequently，the rapidity with which the heat will be transterred，will depend mainly on the size of the pipe．The circulation will be obstructed by bending the lower end of the pipe upward，in the form of a U．－Eds．

Hren Malking．

Messes．Eivons：－I have betore me your descrip． tion of the Bessemer steel，and I have no doubt it must strike your readers that it reveals such radical lefects in our present iron making as should awaken the inventive genius of chemistry．First，we waste coal and spoil the iron by supercarbonation．Next， we consume more coal to drive out the carbon to make the iron ductile．Finally，we bake it again in carbon，to restore some of the carbon it had at fisst and which we spent so much to drive out of it：and this makes it steel．From this it is to be inferred that a certain diminished portion of carbon im parted in the furnace would probably give us cast steel，and from tisis we could make wrought iron，with again less expense of carbon and labor．Malleable cast iron professes to be made by extracting carbon from pig－metal superficially，and，as steel men aver，so do malleable cast－iron men，that some nitrogen is nec－ essary．Malleable cast iron has very extended uses， which would be trebled it it could be obtained of uni－ form quality．It is very unreliable in this respect； and the same is said of Bessemer steel．The fact that

