of nerves start from the above lobe and communicate with the electric batteries. If these nerves bc cat or tied all electric phenomena cease; but in order to completely prevent any discharge they must all be tied or cut, for if they are only cut or tied on one side of the body the discharge will continue on the other side.
" The gymnotus is similar to an cel in appearance, and is commonly known by the name of 'electric eel.' These eels average about seven feet in length, and their skin is covered with a glue-like substance. They abound in the rivers and lakes in certain parts of South America. Their electric power is so great as to knock down men and even horses. Whenever a fisherman chances to catch a gymnotus and a young erocodile in the same net, when it is hauled in the latter reptile is generally found dead or paralyzed, while the electric eel shows no mark-the crocodile having been electrifled before it could reach the fish.
"In certaln sections of South America when it is necessary to enter a pond or stream of electric eels, wild horses are drlven into the water infested by these formidable fish. Humboldt describes the method pursued. As soon as the eels hear the unusual noise caused by the plunging of the horsis, ther rise to the surface and attack the animals with their powerinl electric batteries. The natives surround the pond or occupy the branches of trees overbanging the water, armed with harpoons and long reeds, and by their wild cries and reeds prevent the horses froro landing. After a desperate combat, in which many horses are often killed and others paralyzed by the repeated and terrific shocks of electricity, the gymnoti being weakened by fatigue and loss of galvanic power, seek to escape in order to rest them selves and recuperate their electric strength, when the horses remaining drive them to the shore, where they are easily captured by harpoons attached to ropes.
"Professor Farraday has described the characteristics of the electric discharge from these fish. By the ald of two metal plates joined to the extremities of the galvanometer and applied to various points on the body of a gymnotus he succeeded in determining the direction of the discharge. He discovered that the anterior portion of the eel always formed the positive pole, and the posterior portion the negative pole, so that the direction of the current in the gal vanometer was from the head to the tail. By causing the discharge of the gymnotus to pass over a wire arranged in a spiral, in the interior of which several needles were placed, he succeeded in mag netizing these needles in the required direction, by the direction of the discharge from the head to the tail of the fish. The same philosopher obtained chemical decomposition by the employment of iodide of potassium, and roduced the electric spark by in troducing into the circuit an electro-magnetic spiral, having a cylinder of soft iron in its interior.
"The electric apparatus of the gymnootus extends over the entire levgth of the back and tail, and consists of four longitudinal fasciæ, composed of a large number of membraneous lamiuæ, nearly horizontal, parallel, and very close together, and united by an infinite numker of scales placed vertically aud crosswhee. The little prismatic, transverse cells formed by the Junction of these laminæ are filled with a gelatiwous substance. The whole apparatus is supplied with very large verves emanating from the spinal nerves.
-The silurus electricus of the Nile is a'.out two feet in lelgth. Its mouth is provided with six fieshy tentacles. It is to be found chiefly in Eeypt and Senegal. The Arabscall it raasch, anglice, thunder. Its galvanic power is considerasle. Geofioy SaintHilaire made many curious experiments upon this fish during the siege of Alexandria. The electric apparatus of the silurus electricus consists of a species ot fatty cellular tissue extending over the whole body between the skin and the muscles.
"In conclusion, the phenomena presented by electrical fish may be said to be of the same order as those produce bs our scientitic apparatus, viz.: deviation of the needle of the galvanometer, elevation of temperature in corijunctive wires, magnetization, chemical decomposition, and, lastly, electric sparks.'

Thr Paciflc Ocean covers seventy eight millions o square miles the Aulantic twents-fivemilliong.

Hintusightuct

Toughening Steel by Hot Water

Messrs Editors:-I am a constant reader of your truly valuaole jourual, and have been since the first number; now it has become one of the indispensa bles, and I look with eager interest for each number. I am always instracted and often amused at the ques tions asked, and the answers to them by your numer ous readers. I have been a worker in steel since i 815 for edge tools and machinery, and all other purposes for which it is used in this country, and am particularly interested in all I see writteu on the nature of that metal. Some time since I saw the question asked, "Why is a Razor Putin Hot Water?" I felt competent to answer the question, but not being accustomed to writing for the public prints, I felt a difflence to appear before your hundreds of thousands of readers, and waited to see some one explain It. I will explain why a razor should be put into hot water before using.
Every degree of heat there can be put into a razor or any oiber tool, without injuring the temper, strengthens the steel. A razor has, or should have, the most delicate edge of all edge tools, and the highest or hardest temper; unless strengthened by heat, it would not stand the harsh usage that its delicate and hard edge is put to, as any man can prove by trying without beating it. He will find it broken out in notchas wherever it has come in contact with the beard. The saw appearance of the edge, as one of your correspondents explains it, is caused by sharpening it. Any one examining a beautifully polished razor with a microscope is astonished at the rough and scratched appearance, and whenexamined carefully the scratches will be found to be cut through Its delicate edge, producing a sickle instead of a saw edge. Hot water is the salest way to heat any tool and give it strength without danger of injuring the temper. All tools should be heated that are to be put to harsh usage, especially in cold weather. Most tools that cause great friction by use will produce the beat after they get to work.
Every wood-chopper does, or should, understaud that if he attempts to work with a trosty ax he will break it, but when once at work the friction produces the necessary heat to strengthen it.
In my experience, the most difficult tool to make stand tor the purpose intended, and the severest trial for steel, is a pick edge for cutting French burr-mill stones. These stones are the third hardest substance in nature, and a pick to answer has to be of the best steel, and must be the hardest temper of all tools whatever. In this case the hot water answers an admirable purpose, and is really indispensable in cold weather; in a great many trials and experiments I find it very benetic.al, even in hot weather, as it allows the edge to be made very harc, and prevents the steel from flying if it is kept sharp by grinding.
I would say, for the benefit ot millers, never use a pick so dull that it does not cut freely, as it should be made too hard to stand much hammering. If yon use it dull it shatters the steel and is pronounced tor hard, when the fault is improper usage.
D. C. Stone.

Kingston, N. Y., Nov. 4, 1865
[Our correspondent need have no diffidence in writing to this paper. Some of the most valuable communications that we receive are from practical men, making known some fact that has come under their personal observation. While we leave communications with as little alteration as possible, we al ways correct grammatical errors, and if the matter is not new, or it we think it will interest few or none of our readers, we throw the letter into the waste bas ket, and it gives us no trouble whatever. We fre quently receive the same explanation or statement from several correspondents; then we gencrally publish the first received, and, of course, throw the others amay. - Ens.

Negative Slip.

Messrs. Editors:-In the Scientific American of the 21st October, page 257, "Negative Slip," of the screw propeller is noticed from au English publica-
|tion, and variously, but I think erroueously, account ed for. This so-called "negative slip" gives a greatter speed to the vessel than demanded by the rotation of the screw.
An article from the present writer, T. W. B., of Oct. 8, 1864, page 233, on "The Peculiarities of the Paddie Wheel," contains the following solution of the above phenomena:-"Experience shows an advan tage of the screw propeller over the paddle wheel, of 10 to 15 per cent, and the cause of this superior efficiency may be tound in the partially dead water against which the screw acts, and yet without drawing back the vessel, owing to the continued advance of the vessel beyond the immediate influence of the backward ejected water."
This saving effect attends the stern-wheel and screw steamers of the West.

Thomas W. Bakewell.
Cincinnati, Oct. 27, 1865.
Power Required to Drive Machinery.
Messrs. Editors:-I take pleasure in giving you my experience as regards the amount of power I obtained from a water wheel I put up two years ago. I was at that time manager of a wood-turning establishment. We were running four of Weymoth's patent wood-turning lathes, at the rate of 3,500 revolutions per minute, by a three-inch bell on each spindle, stretched to its utmost capacity. Also, a gage lathe, using two three-inch belts, running at about the same rate of speed; one common turning lathe; one two-foot circular saw, at 1,800 revolutions per minute; one twenty-inch circular, 2,000 rerolutions; one sixteen-inch, 2,500 per minute, and one small eight-Inch circular saw, 3,000, with a circular cross. cut saw, of twenty inches, for cutting slab, plank, etc. We were also running a muley saw rotary feed, put up in the best manner, cutting 1,500 feet of hardmaple boards, or 2,500 teet of pine boards in ten hours. The whole was driven by one water wheel, tour feet in diameter, using 360 inches of water under an $8 \frac{1}{2}$-foot head and fall. The wheel was one of my own make, and is what we call a "direct-action" wheel, with a reaction bucket attached underneath the direct-action floats. The wheel, with its upright shaft, only cost me $\$ 110$ to build and put up, it being principally made of wood. It ran perfectly steady, and almost as even as a steam engine with a governor.
B. A. Stratton.

Towanda, Pa., Nov. 1, 1865.

Tamishing of Silver-plated Ware.

Messrs. Editors:-In the Scientific American of August 19, 1865, you published correspondence on the causes of tarnish on silver plated ware. Your correspondent says, it it would be interesting to your readers, he could give the best modes of preventing the tarnishing of silver ware and of removing the same from silver-plated or solid silver articles.
There are a great many in the retail trade that would like to be informed of the best modes of doing the same-myself being one of them. Please ask "E. W. C." to be kind enough to putlish the infor mation on the subject, and he would oblige a great many of your readers in this section of the country
II. P., Watchmalier.

Peoria, Ill., Oct. 23, 1865.

SPECIAL NOTICES.

Alfred Platt, Waterbury, Conn., has petitioned for the extension of a patent grantel to him on the 13th day of January, 1852, for an improvement in buckwheat fans.
Parties wishing to oppose the above extension must appear and sbow cause on the 25th day of December next, at 12 o'clock, M., when the petition will be heard.
Byron Densmore, New York City, has petitioned for the extension of a patent granted to him on the 10th day of February, 1852, for an improvement in grain harvesters.
Partles wighing to oppose the above extension must appear and show cause on the 22d day of January next, at 12 o'clock, M., when the petition will be heard.

Onituary.-Chief Engineer Cusbman, U. S. N., who was upon the Kearsairge when sbe cruised for and sunk the Alabama, died on Thursday last.

