Sumfitie dmmen

THE ADVOCATE 0F INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND 0THER IMPROVEMENTS.
VOL. XIII. NEW YORK, JANUARY 2, 1858. NO. 17.

the

SCIENTIFIC AMERICAN, published weekly

At No. 128 Fulton street, (Sun Buildings,) New York,

 by munn \& coo. d. munn, s. il. wales, A. e. beach

 Brooktyon and Jetraey hity?
 Agents Eemplosednectus on last page No Traveling
\qquad ts in Cannon.
On this subjecumptain Blakely, R. A., in an article published in the London Artisan, states that "a 32 -pounder is the limit of cast iron guns of the present shape, any large than that being unsafe with a full charge. In reference to cannons of large caliber, the shot canbe carried to a greater distance, and do more execution than small balls, because the weight of the ball is greater in proportion than the surface of resistance to the air. Thus a 16 -inch shot presents sixteen times the sur face of resistance of a 4 -inch shot, but it weighs sixty-four times as much. Large gans, however, require to be made stronge than small ones, large shot taking a longer period of time to acquire its velocity, therefore the pressure of the powder on the gun remains longer. The time that great pressure is exerted on any material is an importan element, to which toolittle attention has bee paid in submitting bodies or instruments to severe tests of strength. A body may bear a certain pressure for one second, which if continued for one minute would destroy it. This is doubtless the case with cast iron, of which material camnon are made.
Captain Blakely recommends that cannon of large caliber (say 10 -inch) be formed of the same shape they are at present, but that the outside, at the breech, be strengthened with two layers of thin wrought iron cylinders put on at a bright red heat and hammered. One gun of this description made by him stood 447 rounds with double charge, and 158 round loaded to the muzzle. R. Armstrong, of Newcastle, England, has made a cannon of a solid steel center, with bar iron coiled round it and welded, which has stood thousands of rounds Captain Blakely believes that, for very large cannon, a good plan of construction would be with a cast iron cylinder center, and either rod iron wound round it at a great heat and welded layer over layer, each in cooling taking a permanent strain, or else substitute strong iron wire wound round it at a high heat, each layer having a greater initial strain than the one under it. In this manner all the fiber is laid in one direction, andthe outside takes its share of the strain. The subject of heavy ordnance is now exciting much attention among engineers of gunnery and others. The foregoing views, in our opinion, deserve general attention from all interested.

Alloy of Chromium.

In the Comptes Rendus, it is stated that M Fremy has lately obtained an alloy of chro mium and iron, by reducing chromate of iron with charcoal under a high heat in a crucible The alloy, it is stated, resembles brass in ap pearance, and is very hard.

JENKINS' SHEEP SHEARER.

One of the oldest materials used in the manufacture of fabric is the wool and hair of animals; and although at first the wool would be taken from the dead animal, it was not long before the living one was robbed of its natural clothing to protect our more tender bodies from the atmosphere's changes. The scissors or shears used for this purpose were very primitive indeed, being only two blades and a spring back ; and with this simple implement sheep have been sheared for thousands of years past; it is but lately that a new implement has been introduced which can be worked by power, thus leaving the operator all his strength to manage the sheep and guide the shears.
Our engraving (Fig. 2) represents a sheep being sheared by one of these machines, which is snspended from a beam, A, and consists of a frame, B, carrying a fast and loose pulley, C, turned by the belt, D, to which motion may be given by any convenient means. From the frame, B, a short shaft, G, descends, carrying the arm, F, which can be moved around upon it, and is free to be accommodated to the wants of the operator. From the end of F is suspended by a rack the pulleys and shaft, H , to which is attached the shaft, K , by an universal joint at J , carrying at its extremity the knife and handle, L. Motion is communicated from D by a spindle passing through G, having a pulley, E_{J} at its extremity, which imparts motion to the cord, I, and thus by turning the shaft, K , through the pulley and universal joint, J, gives motion to the knives, m, in L, by the universal joint, k, as seen in Fig. 1, which is an enlarged view of the cutter, knife, or shears, L. l is the
handle, and m the kuives, which move against cach other by means of the appsarus above described, and n is a stop for regulating the motion of the cutters. In the process of shearing, the sheep is ustally laid upon a table, with its head under the operator's left arm, while with the right he governs and guides the shears. By the construction of his machine it will be seen that the shears can be guided to any inequalities of the sleep's body; and there is little doubt that it is a good and convenient labor-saving machine. This is the invention of J. V. Jenkins, of Detroit, Mich., and was patented by him the 8th of September, 1857. All further information can be obtained by addressing as above.

Divisibility

This is a property possessed by all bodies, and means their capability to be separated into parts.
It was formerly a question among philosophers whether matter was capable of bcing divided ad infinitum, or whether there was a limit beyond which matter could not be divided. The question is incapable of direct solution, and fortunately science does not require that it should be known; but the extent to which subdivision has been carried in the arts is prodigious. In the gilding of buttons, five grains of gold, which is applied as an amal gam with mercury, is allowed to a gross; so that the coatiug left must not be morc than the 110,000 th part of an inch in thickness. If a piece of ivory or white satin be immersed in solution of nitro-muriate of gold, and exposed to a current of hydrogen gas, it will be
covered with a surface of gold not exceeding the ten-millionth of an inch in thickness.
A single grain of blue vitriol will give an azure tint to five gallons of water. In this case the coppermust be attenuated ten million times, and yet there is sufficient in each drop of water to give it color. Odors are capable of still further diffusion: a single grain of musk has been known to scent a room for twenty years.
Animal matter likewise exhibits many instances of wonderful subdivision. The milt of a codfish, when it begins to putrify, has been estimated to contain a billion of perfect insects, so that thousands of these little lives could be lifted on the point of a needle. One of the infusorial animalculæ found in duckweed is ten million times smaller than a hemp seed; and another, discovered in ditch water, appears in the field of a microscope a mere atom endowed with sentient life, and millions of them play, like sunbeams, in a single drop of liquid.

Soluble Glass Soap.

At a recent mecting in Berlin of the Association for Promoting Industrial Arts in Prussia, if. Wichgraf reported the results of a trial that had been made with the silicate of soda (soluble glass) as a substitute for soap in washing clothes at the prison of Spandau. At this place 5,936 articles of clothing are washed every week. The cost of soaking these with soap amounted to about $\$ 594$, but with the silicate only $\$ 176$. The linen is first steeped for twenty-four hours in a mixture of one pound of the silicate of soda to ten gallons of water, then it is washed with common soap suds rinsed in clean water and dried. The steeping of linen clothes in an alkaline or soap solution prior to washing in the usual manner, affords time for the grease and dirt in them to unite with the alkali or soap, they thereforerequire but litile rabbing and labor afterwards. Clothes treated in this manner involve less labor in washing than by the old method, without steeping. A great number of persons in our country pursue this system; still it is not a universal practice.

Platinnin.

This metal, which is rather heavier than gold, is of a greyish white color, and is capa ble of receiving a very fine polish. The tenacity of pure platinum is almost that of iron, and for all practicable purposes it may be regarded as infusible; like iron, it yields to the hammer, and can be welded at a white heat. None of the simple acids will attack it, and therefore it is used to make vessels for their manufacture, its only drawback being the great expense. It is dissolved by a mixture of nitric and muriatic acids. When in an cxtremely divided state, platinum has a peculiar property of absorbing great quantities of gas, and also of igniting and becoming red hot in a stream of hydrogen. Platinum was not known in Europe until the middle of the last century, although it was known long before on this continent, where it had received the Spanish name of platince, or little silver. It is found in Peru and Russia, which last country affords about one thousand pounds annually, and about six hundred pounds are given to the world every year by Borneo.

Gronad Nuts.

These nuts are produced underground by various plants, chiefly shrubs and umbelliferous plants, while in China they come from the common vetch.

§sinutific Anmricant

Issual from the United States Pateat Oftco For tite wreie exing peccuarg 22, 1867 .
[R:, ported onerexuly for the Scuntific American.]

 [For a furth un2.]

 and the the
forth.
 throw the soil either offor on the hills.]

 [We have notic
of this journal.]
 tubes, as described.

 when artinged is sef torti, zill for the purpose of ito

 tortion cont
of the
of thift
t [Full particula
anothercolumn.

 oninchit t enter or
needle, which pushent consists in the use of a forke stead of mulling it through cotton through the cloth, in mesiaus.

s ribed:
[By a simple combination of mechanism, consistin of a cutting wheel, toothed cone, and concave and semi
circular disk, operating together, rroumd into a fit state for fort ther.]

 HAND Prising Prgse-J. M. Jones of PI Imyra

 Reprinif Iror-willian Kelly, if I yon Counts

 with when thie Hasat enters directly into hat one of
either. of the chambers, 1 as and for the purtoses set
fotith.

 annuilus of toin for found the mouth
againt the glassknob, as speciitica.

 lo the axis of the radiatorys. as set 1

 setioth, scond, Inim providing in the top of the gaid fur
nacc, an opening, ff, or a number of such openings. o

 hook, tof orm the loop, that being found in the paten
of J tames E A. Aibles, June 2,1857 , to which this is an

 the whole made and operated as described.

 for the purpose specifie
[For deseription of page.]

 lilininy hrime
poses set forth

 ion the purroses set forth
SAw SEr-Edvard Marshanl. of Brooklyn, N. Y.
claima a sav sct made as described.
Cor. Hugkers- Divill 1 I . Mcford of Perysburs

 Grindicg Minil-Johm R. Morrison, of East Spring.
 the purpose of adjusting the stones, ns set forth and de-
seribed
Second

 ouring dress on one sidic and"a choo dress on the other. for the purliose of grinding dirferent

 sate rel
CThis invention consists in combining the catch o
Doltwhichseaures the gate, in an open und closed with aspring which actuates the gate, the partsbeing so arranged that tas the catchbolt is withdrawn, and the gatereleased, the spring will, by the same mechanism,
be wound up, and receive sufficient strength to actuato the gate.J

 tons and valves shallibe operated sumultaneously with
the piston and davtes of the cylinder, and by thic sand
means

 This invontion liss for its olject the adjustment of he potating frume, so that the clothes can Le taken of

 sence is obtaile staked.]
fent

 manam: anu for the purpose Hol

 Mor do I claim braudy the ikza of adjusting the

[This invention is designed to collect the strani iart: cles of butter which husuanly cscane when a hooizontal dasher is employed. This dasher iz caused to slide
upon its antc. and by a genlle ruation the buttor is col lected.]
Curus- Yames Vandolat and Elins3 Curry, of Dills

 [Adescript
other page.]

 IIn anothor part of our paper a desciption of this will we found.

are employed.

cissitudts of weather. Instead of being limited to five or six months in tue year, ten or eleven may be secured. There is nothing to prevent operations on this day (December 15), or, in fact, whenever the temperature is not down to the freezing point. This, of course, requires the molding to be done by a machinc, as the cold clay cannot be handled.
Drying floors being no longer needed, brick works may now be established in many a spot hitherto impracticable, as you only require room for the kilns, and a shed one hundred feet long. About twenty feet of the tunnel must be of brick; the remainder, with the smoke-stack, may be of lath and plaster, or any other cheap material. The cost of a tunncl, with the cars, \&c., to turn out 25,000 bricks per day will be about $\$ 1200$ or $\$ 1500$, which is much less than the floors, sheds and other requisites of a yard in the present mode. I have here given the mere outlines. Those wishing further information can address me by mail.

Francis If: Smith, Baltimore, Md. [If this improvement secures all the objects specified by our correspondent, it is certainly of great importance to brickmakers. During the early part of last summer, the weather continued cold and wet, preventing many of our brick manufacturers from carrying on their usual amount of business. In one case known to us, the weather disabled an extensive manufacturer from fulfiling a large contract, and he was thereby subjected to a considerable loss. Had he been in possession of the above information furnished by Mr. Smith, he would have been enabled to meet his engagements with profit instead of loss to himself and others.

Eclectic.

This word is now in almost daily use, and is found on the title page of many works professing to have for their aim the advancement of true knowledge and civilization. It is derived from a Greek word which was applied to a school of philosophers who endeavored to sclect from the systems of various schools those doctrines which alone are true, and to present them in the form of an entire whole, calling them eclectic principles.
Pluto and Aristotle may be said to have been eclectic in their views, but the chief of ancient eclecticslived under the Roman empire, the most celebrated of them being Epictetus, who lived in the year 60, A. D., and Plutarch, who wrote a series of biographies of great men. The most striking example of a philosopher of this school in later days is M. Victor Cousin, a French professor of the mental sciences.
At the present day, when physical science has made such vast strides in the onward march of truth, it has been necessary for eclecticism to step in and act as a kind of check to prevent us from rushing into false theorizing and wild speculation; and in no branch is this more necessary than in medicine, where every new quackery which starts up around us finds some believers. It is therefore requisite for the well-being of the body, that calm and cautious men should examine the facts supporting the system thoroughly, so that any grains of truth there may be in it may be used for the good of the world, and all the chaff may be blown to the winds.

Ocenlt Seience.

The age of research and investigation in which we live has entirely done away with the chimeras of theancient alchemists, astrologists and others of the same class, except amongst the most ignorant and degraded of the community. Yet we must not hold them in disrespect, as they were the germs of two of the noblest of our modern fields of inquiry, namely, chemistry and astronomy.

Monoliths.

This is a name given to a monument or pillar composed of a singlestone. They were common in ancient times, the obelisk of Luxor now in Paris being an illustration.

Paiuting on Glass.
There is a common opinion that the ancient art of glass-painting is completely lost. This, however, is so far from being true, that it is now carried to a much higher degree of perfection than ever before, except in one particular color, and even that is very nearly approached to. We can blend the colors, and produce the effects of light and shadow, which the ancients could not do, by harmonizing and mixing the colors in such a manner, and fixing by properly enameling and burning them, that they shall afterwards become just as permanent as those of the ancients, with
the additional advantage of superior art. In modern times, glass-painting has been carried to the greatest perfection at Zurich. The process is effected chiefly by colors derived from metals. The colors are laid on by fluxes, as soft glass and easily vitrified bodies. The colors are affixed by annealing the metals to the glass.

Recent Patented Improvements.

The following inventions have been patented this week, as will be found by referring to our List of Claims on another page :-
Svow Plow.—Andrew Hotchkiss, of Sharon Valley, Conn., has invented a new plow for excavating snow. Iu can be used as an ordinary snow plow in light snows, and when a deep snow occurs, or the snow accumulates in a cutting, one of these plows attached to the front of the locomotive will act as an excavator, and dig the snow away in blocks.
Potato Digger.-A new potato digger has been invented by Jacob E. Hardenburgh, of Fultonville, N. Y., which consists in the combination of an adjustable share and grating, with horizontal and revolving arms, on a suitable framing and wheels, arranged relatively with each other, to dig the potatoes and throw them in ridges on the surface of the ground.
Galvanic Gas Lighter.-This apparatus (which will be found fully described and illustrated on page 320, Vol. XII, Scientific American) is the invention of S. Gardiner, Jr., of New York City. It consists in placing a fine coil of platinum wire over the burner, which is made red-hot by the passage of the electric force, and the gas impinging on it becomes ignited. By this means any number of burners may be turned on and lighted instantancously. It is a valuable invention.
Extension Table-This table has slides of sheet metal plate, which are bent so 2,s to form tubes, each of which has externally a dovetail tongue on one side, and an inversely corresponding groove on the inner side, so that the tongue of one slide will fit into the groove of the other. Dy this means the perfect working of the slides is obtained, and the table is rendered stiff and firm; it is not likely to get out of repair. It is the invention of Edwin A. Curley, of Westport, Conn.
Cuttine Slots for Stiles in Wash boards.-O. L. Reynolds, of Dover, N. H., assignor to Hiram F. Snow, of the same place, has invented an improved machine for cutting zig-zag slots in the stiles or hill pieces of washboards, to receive the ends of the corrugated sheet metal plate. It consists in having a wheel provided with a zig-zag cutting edge placed on a shaft over a bed having a longitudinal groove made in it to receive the stiles or side pieces. The wheel, as it is turned, cuts the zig-zag curves or slots in the stiles.
Saw-ser.-The class to which this saw-set belongs is that in which a punch is employed to bend or give the set to the teeth of saws. The invention consists in attaching the punch to a swinging or vibrating bar, which is operated by a cam and spring, and using in connection with it a beveled inclined bed and set screws, whereby a greater or less set may be given to the saw as desired, and the implement may be applied to the saw with the greatest facility, thus setting saws in an expeditious and perfect manner. It is the in rention of Edward Marshall, of Brooklyn, N. Y.

Improvement in Beling.-The object of this invention is to prevent the slipping of belts on small pulleys when driven by a larger one. It consists in leading a belt from the large pulley round the back, to and round an intermediate pulley on a third shaft; from this intermediate pulley the belt is carried back again around the small pulley to the large one. By this arrangement the smallest pulley can be driven by a large one without any danger of the belt slipping. The arrangement is the invention of Benjamin Chester, of this city, who has assigned it to V.H. Burnap, of Lowell, Mass.
Cuttine Metal Tubes.-This invention consists in having a metal collar provided a one end with a flanch, which fits in a recess in a circular stock fitting loosely on the collar. The opposite end of the collar has a ring secured upon it, by a screw passing through them both, and pressing against the tube to be cut, which is fitted inside the collar. The stock is fitted and works between the flanch and ring, and a cutting tool is placed in a socket attached to the stock. The tube is cutby rotating the stock on the collar, the cutter being fed to its work by a screw worked by hand. It is especially applicable to cutting gas tubes, and is the invention of T. J. Lloyd, of Pottsville, Pa.
Castine Hinges.-The object of this invention is to produce a hinge in which all the adva ntages of the best drilled and wired hinges are obtained, and which is, in some respects, superior, at a cost scarcely exceeding that of the pivot hinge, which is formed by casting the two parts together, with teats and corresponding recesses at the center of the joint. The invention consists in the introduction of a wrought iron pin, or pins, into the center of the joint, by the molding and casting process, in such a manner that they extend through the knuckle or knuckles of one leaf of the hinge, and protrude so as to form pivots entering into, but not passing through, the knuckles of the other half of the hinge. It is the invention of Nicholas A. Fenner, of Providence, R. I., and assigned to the N. E. Butt Co., of this city.
Circular Saw Machine.-This invention consists in attaching the saw guides to a forked or V -shaped bar, which is fastened to a collar on the saw arbor, and having the pillar blocks which receive the bearings of the arbor pivoted to the frame; the bearings being fitted in the pillar blocks in a peculiar way and the outermost pillar block and bearing being rendered adjustable longitudinally, whereby a longitudinal play or movement is allowed the saw arbor, and consequently a lateral play is allowed the saw, so that it may conform or give to the spring of the \log; and the "dip" of the saw is regulated, or more or less "clearance" can be given it, as may be required. It is the invention of A. C Martin and Mahlan M. Wombaugh, of Cincinnati, Ohio, who have assigned it to A. C. Martin and R. Asheraft, of the same place.
Castine Car Wheels.-A. A. Needham, of Rockford, Ill., has invented a new method of porforming this operation, by which he overcomes the difficulty hitherto attending the casting of perfect car wheels, in consequence of the unequal cooling of them, produced by casting with a chill, in order to harden the periphery. Wheels cast with a chill are liable, from the cause above alluded to, to crack, and the iron prevents it from assuming that crystalline structure of cast iron which is best adapted for strength. The invention consists in using two different kinds of iron, hard and soft, and having the mold placed within a revolving flask, the melted hard iron beingtirst poured into the mold, which, by centrifugal force, will be pressed hard to the edge of the mold, thus forming a periphery of hard iron; the softer iron can be aftewards poured into the mold, to form the body of the wheel, and the whole being allowed to cool graiually, the wheel will contract equally throughout its mass.

