§icintific Ammerican

NEW YORK, NOVEMBER, 1, 1856

R. A. Brooman, of London (Editor Mechanics' Magazine) has secured a patent as agent for a foreign inventor for what is called " new method of manufacturing cast-steel."
The basis of the invention consists in the in troduction into crucibles, along with the pieces of wrought or malleable iron, of certain chemicals in which cyanogen is contained. As for example, cyanide of potassium and ferrocyanide of potassium, are to be used in con nection with some form of sal-ammoniac The usual furnaces and melting pots suitable for melting blister steel may be employed The malleable iron (which may be of any description, such as jar, serap, blooms, \&c.,) is prepared by cutting or breaking it up into small pieces. In a $50-\mathrm{lbs}$. charge of iron in a crucible are introduced ten ounces of charcoal, six ounces of common table salt, halfan ounce of brick dust or oxyd of manganese one ounce of sal-ammoniac, and halfan ounce of ferrocyanide of potassium. The pot is then to be covered and introduced into the furnace, and the contents thoroughly melted, the heat being maintained for the space of three hour or thereabouts. The mass is then to be poured off into iron molds in the ordinary way of pouring cast-steel, and with the usual care required for producing a solid ingot. This may then be rolled into sheets, or bammered and tilted into bars, after the common method. In this process the employment of table salt, manganese, or hrick dust is for the formation of scoriæ upon the top of the melte mass, to keep out the air. The proportions of ingredients given may be varied, and some may be omitted altogether, or others substituted. The essentials are the sal-ammoniac, some substance affording cyanogen, and charcoal. Fine cast steel may be produced with ferrocyanide of potassium and charcoal, also with sal-ammoniac and charcoal. The hardness or brittleness as well as firmness of grain and degree of malleability may be varied by altering the proportions of the several ingredients, especially of the charcoal, salammoniac, and cyanogen. No particular character or quality of iron is necessary. Steel, it is stated, can be produced by this process from common English iron equally as well as from the best Swedish.
There isonly a mixture of common materials to convert iron into steel by this process, and yet there is considerable that is novel in the particular mode of applying them to produce the specific result. For example, the ferrocyanide of potassium (prussiate of potash) is now and has been used for a long time to steel the surface of iron articles, by the process called case- kardening; but so far as we know, it has not before been employed in the crucibles to convert iron into steel. Then again, charcoal and manganese, and.brick dust and salt, have been used, and are now employed mixed with scrap and broken iron in the crucible to convert it into steel ; this is "Heath's process," and was a most valuable discovery when it was made. Cyanogen, which is stated to play the important office in this new process, is a compound of nitrogen and carbon; sal-ammoniac, which is also used, is a compound of nitrogen and hydrogen. We have no doubt but good steel can be manufactured by thi new process, as the cyanogen materials em ployed have been proven by experience to pro duce the effect of steeling iron, even before cyanogen was known by name in chemistry, or its composition was discovered. That is, pieces of horn and scraps of leather were employed hundreds of years ago by blacksmiths, tool makers, and armorers, for case-hardening iron ; and it was the cyanogen in these sub stances which produced the specific effect; but the cause was then unknown to those who operated with it.

The prussiate of potash is manufactured from hoofs, horns, and scraps of leather, and although it is now much employed as a substitute for these crude ingredients in case-hardening, there are many who still follow the old method, and continue to use scrap leather.

Illustrate your Inventions. Last week we briefly alluded to the fact that early all the prominent novelties at the Crysal Palace, in the mechanical department, had een illustrated and described in our journal. The same circumstance is observable at almost every public exhibition, whether of a mechanical or agricultural nature, wherever held.
The most successful and profitable patents, beyond all doubt, are those that have been illustrated in our paper. In reminding patenees of this fact, we would also inform them that we make no charge for publishing engravings of new inventions, so that if they fail to avail themselves of theprivilege which others enjoy, it is their own fault. All we require is, that parties shall pay the cost of he cuts.
The Scientific American is probably read by 75,000 or 100,000 persons every week. It is the leading guide and anthority in respect to inventions. Indeed, it is a sort of public record ofthem. Every inventor should puthis discovery on record, even if it is only for his own satisfaction.

5 a les of Patents.

Bishup's Sad Iron.-Patented May, 1856 G. W. Bishup, Brooklyn, N. Y., has sold one half of his Sad Iron patent, illustrated in the Scientific American, Vol. 12, No. 1, for the sum of thirty thousand dollars $(\$ 30,000$.)
Vice's Windmill.-Patented Aug. 29, 1854 T. C Vice, of Rochester, N. Y., and W. D. Snow, of Chicago, Ill., half assignee, have sold the patent of the above windmill for the State of Indiana to James C. Rose, for the sum of $\$ 7,000$. Also the State of Missour to A. C. Pardee, for $\$ 10,000$. We are in formed that there are nearly fourteen grist mills driven by this windmill, now in cours of erection in diferent parts of Illinois.
Spear's Weather Strip.—Patented April 22d 1856. Mr. Alfred Spear, of Passaic, N. J. has sold the above patent for the State of Ohio for $\$ 3,500$, and the State of Illinois for $\$ 2,500$. All the doors and windows of the new Court House at Cincinnati, O., are fur ished with the above invention. See engrav ing Vol. 11, page 06, Scientific American. Steqhens' Corn Sheller.-Patented April 220 1856. Richardson \& Co., Chicago, Ill., repor the sale of the above patent for Illinois, Iowa and Missouri, for $\$ 3,000$.
Grifiths \& Shield's Horse Shoe Machine. Patented Dec. 19th, 1854. Mr. Robert Grif fiths, Philadelphia, Pa., informs us that he has sold the above patent to a joint-stock company in that city composed of practical wealthy, and energetic men, for the sum of sixty-five thousand dollars ($\$ 65,000$)
Sters' Tanning Process and Apparatus.Patented March 4, 1856.-Ellithorp \& Co., o this city, report the sale of one-half of Abraham Steers' patent, as above, for a handsom In
In addition to the above we have names meports of many other patent sales, but cated to warrant their publication.
These reports are intended for the informaion of the public and for the encouragemen of inventors. We want our men of genius and means, to understand that their minds and their money cannot be better employed, than in originating and developing new inrentions.
All persons who make sales of patents, or who hear of such sales, are requested to report the facts to us with a view to publication. Give names and dates, so far as possi ble.
We have reports of some large sales of American inventions in Europe, but shall defer publishing themfor the present, for certain reasons.

Resmelting.-Cast Iton Turnin It has been stated in some of our daily papers that iron turnings have been heretofor valueless, because of the impossibility to remelt them, but that Abiel Pevey, of Lowell Mass., has invented a new method, and E Lyon, of this city, another, to resmelt them, and thus render them useful. The method of the former is to place iron filings in hollow castings, and then resmelt them altogether; the plan of the latter-Mr. Lyons-is to make
them into a compact mass, and smelt them in
an open farnace surrounded with glowing an open farnace surrounded with glowing
fuel.
Such stuff is being continually set before the public by those who know nothing about the art of iron smelting. Why, excellent steel has been manufactured for a considerable period in this city from scrap iron, turnings, filings, \&c. There is no difficulty experienced in smelting iron turnings and filings in a cru cible.

New Method of Henzing $\mathrm{gaws}_{\mathrm{a}}$

By John Robingson, of New Brighton, Beavr Co., Pa. In this improvement the saw strained between the arms, A A, pivoted a their backends to the frame B. The upper ends of the saw are furnished with jointed pendants, F F. Reciprocating motion is givn to the saw by means of pitman, C , which connects with a crank, D, on shaft E.

As the shaft, E, is rotated, the two frames will have a vibratory motion, and the saw, in consequence of being connected to the frames as shown, viz., by means of the pendants, F, will have a rocking motion, the lower teeth of the saw cutting the log and then receding, the upper teeth acting successively in the same way, the last tooth that enters the log cutting last. By this arrangement the several teeth of the saw, as they perform their work, reede, and the saw dustis allowed to pass freely out of the kerf; the saw also requires but a small stroke, and will, it is said, cut a log 4 feet in diameter, with an eight inch crank equally as well as a log only half that diameter. The saw also may be operated with comparatively a small expenditure of power, and cuts rapidy. There is notmuch friction in the working of the saw, and but little lubricating material is requisite. The saw, in consequence of its short stroke, does not require to be long. In case of getting out of a vertical position, the aw may be readily plumbed, by having the bearings of the frames, A, and pendants, F,
made adjustable. Patented May 20,1856 formation.

Great Exhibition of the American Ins the Crystal Palace, New York
 Sixth week.

The interest manifested by the public to witness the Exhibition, has increased with each succeeding week since it was opened During the past week, the visitors in the afternoons and evenings have been greater than on any former occasion. Some good machines and articles are entered every year too late to compete for prizes, but not too late to be seen and examined by thousands. This has been the case last week; we shall refer to some of these in our next number, in which shall also be published a list of the Prizes. The Fair has been continued open for a week longer than was previously intended, to the great satisfaction of the pablic and exhibitors.

Portable Saw Mill.
R. Frazee, 114 West 15 th street, New York, exhibits one of his patented portable saw mills, which appears to be exceedingly cheap and simple in its construction. Its whole weight, we are informed, is only one tun, and it is said to be capable of sawing any length or size of log. An upright saw is used. It can be readily put together or taken apart Price $\$ 450$ and upwards. Emerson \& Co. manufacturers, No. 1 Spruce street, New York City.

The Bay State Mills, Lawrence, Mass., an the Watervliet Mills, Troy, N. Y., exhibit a number of checked woolen ladies' shawls and gentlemen's plaids. Their quality is equal to any of those imported, and their colors as brilliant. One scarlet shawl, by the Bay Stat Mills, embroidered with silk, is as well executed as any embroidery we have seen on foreign crape shawls. There is one great defect which we have often witnessed in the arrangement of colors, both in our shawls and carpets, to which we wish to direct attention, namely, a want of care in blending the colors according to the law of intensity, as well as the law of contrast. Thus there are various shades of the same color; these embrace quantity and intensity, and should always be blended with other colors, accorling to their degree of tone. We have se n a feeb'e green contrasted with a deep red, whereas it should have been a deep or intense green.
rial of hand wire Envine
A trial of various hand fire engines took place at the Crystal Palace on the 23 rd ult. They played horizontally through 600 feet of hose. Engine No. 3, of Brooklyn, L. I., tbrew a stream 167 feet in length-the furthest thrown. It was built by $W \mathrm{~m}$. Jeffers, of Pawtucket, R. I., and has proved itself to be a superior machine. The stream thrown was from an inch and an eighth nozzle. It is a short stroke engine on low wheels, and is of the kind called piano. It is our opinion that this form oi fire engine is the best for hand work, as the men can exert their power much better with a short than a loug stroke. Thus a stroke of the arms, reaching from the chin to a few inches above the knee, is one during which a man can exert the greatest force throughout its range. That part of a long stroke taken above the hight of a man's chin, tends to strain the muscles. Every engine should be built with such a stroke as can be best executed by those who work it, and as the strength of a man can be best exerted on a short low stroke machine, of course it must be the best. It is true that the length of the lever is less, but by moking the arms longer, and putting on more men, they can be worked as easily as a long stroke engine.
sewing silk.
H. M. Hemingway \& Sons, of Watertow Ω Conn., exhibit two cases of sewing silk man ufactured at their mills. All the samples do credit to the manufacturers. The uniformity of the twist. and the closenesz of lay in the strands, afford evidence that good doubling and twisting machinery are employed in it manufacture. Thecolors and luster are equal to any silk thread we have examined

Caisstans.
J. R. Pratt, 62 Attorney st., N. Y, exhibits
number of Capstans, of different size

